

INDAGINI GEOFISICHE INTEGRATE DI CARATTERIZZAZIONE SISMICA E PROPEDEUTICHE ALLA REDAZIONE DI CARTOGRAFIE DI MICROZONAZIONE SISMICA MOPS E PERICOLOSITA' SISMICA

QS.G10.A - RELAZIONE TECNICA

Regione Toscana Comune di Fiesole (FI)

FEBBRAIO 2019

COORDINATORE DEL PROGETTO:

Geo-Eco Progetti çã#ØŒÖ^|AÔæræe*}[Á;»Ì Firenze ESECUZIONE INDAGINI:

ENKIS.F.I. Ù[&& ce Åsänis *^*}^\äe civile ed ambientale çãæ ÕÉOES ∥ani, »Î G Firenze

SOMMARIO RELAZIONE TECNICA INTERPRETATIVA

S	AMMC	RIO RELAZIONE TECNICA INTERPRETATIVA	3
IN	DICE	FIGURE E TABELLE RELAZIONE TECNICA	5
IN	DICE	FIGURE E TABELLE ALLEGATO TECNICO	5
IN	DAGII	NI GEOFISICHE INTEGRATE DI CARATTERIZZAZIONE SISMICA DEI TERRENI	15
1	Intro	oduzione	15
	1.1	Premesse	15
	1.2	Contesto	15
	1.3	Scopo delle indagini	15
	1.4	Scelta delle zone oggetto delle indagini	16
	1.5	Descrizione dei contenuti della relazione	17
2	Car	atterizzazione sismica	17
	2.1	Sismica a rifrazione	18
	2.2	Tomografia sismica in onde P ed SH	19
	2.3	Strumentazione e metodologia per sismica a rifrazione e tecnica tomografica	20
	2.4	Prospezione sismica attiva frequenziale - tecnica MASW	21
	2.4.	1 Strumentazione e metodologia	24
	2.5	Caratterizzazione sismica con microtremori - metodologia HVSR o Nakamura	26
	2.5.	1 Strumentazione e metodologia	27
	2.5.	2 Analisi microtremori e del rapporto HVSR – tecnica Nakamura	29
3	Elal	borazione dati e risultati	32
	3.1	Elaborazione dei dati sismici con metodi a rifrazione	32
	3.2	Elaborazione dei dati sismici con tecnica tomografica	34
	3.3	Elaborazione dei dati di sismica frequenziale – tecnica MASW	35
	3.4	Elaborazione dei dati microtremori – HVSR	36
4	Glo	ssario	39
5	Rife	erimenti normativi e bibliografici	40
	5.1	Riferimenti normativi e specifiche tecniche	40
	5.2	Riferimenti bibliografici	40

ALLEGATO TECNICO 1 - SPECIFICHE TECNICHE STRUMENTI, SENSORI, SOFTWARE DI ACQUISIZIONE ED ANALISI
ALLEGATO TECNICO 2 – RISULTATI OTTENUTI DALLE STESE SISMICHE A RIFRAZIONE, PROVE MASW, ESAC E PROVE SISMICHE IN FORO DH
I. ALLEGATO GRAFICO: STESA SISMICA 10_SR ONDE P – SISMOGRAMMI - TABULATI PRIMI
ARRIVI - TABULATI PROFONDITA' E VELOCITA' RIFRATTORI - DROMOCRONE - SEZIONI
SISMOSTRATIGRAFICHE – TOMOGRAFIE
II. ALLEGATO GRAFICO: STESA SISMICA 10_SR ONDE SH – SISMOGRAMMI - TABULATI PRIMI
ARRIVI - TABULATI PROFONDITA' E VELOCITA' RIFRATTORI - DROMOCRONE - SEZIONI
SISMOSTRATIGRAFICHE – TOMOGRAFIE
III. ALLEGATO GRAFICO: STESA SISMICA 22_SR ONDE P – SISMOGRAMMI - TABULATI PRIMI
ARRIVI - TABULATI PROFONDITA' E VELOCITA' RIFRATTORI - DROMOCRONE - SEZIONI
SISMOSTRATIGRAFICHE – TOMOGRAFIE
IV. ALLEGATO GRAFICO: STESA SISMICA 22_SR ONDE SH – SISMOGRAMMI - TABULATI PRIMI
ARRIVI - TABULATI PROFONDITA' E VELOCITA' RIFRATTORI - DROMOCRONE - SEZIONI
SISMOSTRATIGRAFICHE – TOMOGRAFIE
V. ALLEGATO GRAFICO: STESA SISMICA 34_SR ONDE P – SISMOGRAMMI - TABULATI PRIMI
ARRIVI - TABULATI PROFONDITA' E VELOCITA' RIFRATTORI - DROMOCRONE - SEZIONI
SISMOSTRATIGRAFICHE – TOMOGRAFIE
VI. ALLEGATO GRAFICO: STESA SISMICA 34_SR ONDE SH – SISMOGRAMMI - TABULATI PRIMI
ARRIVI - TABULATI PROFONDITA' E VELOCITA' RIFRATTORI - DROMOCRONE - SEZIONI
SISMOSTRATIGRAFICHE – TOMOGRAFIE
VII. ALLEGATO GRAFICO: STESA SISMICA 39_SR ONDE P – SISMOGRAMMI - TABULATI PRIMI
ARRIVI - TABULATI PROFONDITA' E VELOCITA' RIFRATTORI - DROMOCRONE - SEZIONI
SISMOSTRATIGRAFICHE – TOMOGRAFIE
VIII. ALLEGATO GRAFICO: STESA SISMICA 39_SR ONDE SH – SISMOGRAMMI - TABULATI PRIMI
ARRIVI - TABULATI PROFONDITA' E VELOCITA' RIFRATTORI - DROMOCRONE - SEZIONI
SISMOSTRATIGRAFICHE – TOMOGRAFIE
IX. ALLEGATO GRAFICO: STESA SISMICA 46_SR ONDE P – SISMOGRAMMI - TABULATI PRIMI
ARRIVI - TABULATI PROFONDITA' E VELOCITA' RIFRATTORI - DROMOCRONE - SEZIONI
SISMOSTRATIGRAFICHE – TOMOGRAFIE
X. ALLEGATO GRAFICO: STESA SISMICA 46_SR ONDE SH – SISMOGRAMMI - TABULATI PRIMI
ARRIVI - TABULATI PROFONDITA' E VELOCITA' RIFRATTORI - DROMOCRONE - SEZIONI
SISMOSTRATIGRAFICHE – TOMOGRAFIE
XI. ALLEGATO GRAFICO: 11_MASW ANALISI MASW ZVF+THF CONGIUNTE - SISMOGRAMMA -
SPETTRO E CURVA DISPERSIONE – RISULTATI MODELLO - STRATIGRAFIA – PROFILO Vs 221
XII. ALLEGATO GRAFICO: 23_MASW ANALISI MASW ZVF+THF CONGIUNTE - SISMOGRAMMA -
SPETTRO E CURVA DISPERSIONE - RISULTATI MODELLO - STRATIGRAFIA - PROFILO Vs 226

XIII.	ALLEGATO	GRAFICO: 35_	MASW ANAL	LISI MASW 2	ZVF+THF (CONGIUNTE	- SISMOGR	AMMA –
SPETTRO	DE CURVA D	DISPERSIONE -	- RISULTATI	MODELLO	- STRATIO	RAFIA – PR	OFILO Vs	231
XIV.	ALLEGATO	GRAFICO: 40_	MASW ANAL	LISI MASW 2	ZVF+THF (CONGIUNTE	- SISMOGR	AMMA –
SPETTRO	DE CURVA D	DISPERSIONE -	- RISULTATI	MODELLO	- STRATIO	RAFIA – PR	OFILO Vs	236
XV.	ALLEGATO	GRAFICO: 47_	MASW ANAL	LISI MASW 2	ZVF+THF (CONGIUNTE	- SISMOGR	AMMA –
SPETTRO	DE CURVA D	DISPERSIONE -	- RISULTATI	MODELLO	- STRATIO	RAFIA – PR	OFILO Vs	241

* * *

ELABORATO QS.G10.B – ACQUISIZIONI MICROTREMORI – RAPPORTO SPETTRALE H/V – SPETTRO DELLE SINGOLE COMPONENTI – CRITERI DI AFFIDABILITÀ SESAME – CLASSIFICAZIONE PROPOSTA DA ALBARELLO ET ALII

TAVOLE:

QS.G10.C-D - CARTE INDAGINI

QS.G10.E-F – CARTE FREQUENZE

QS.G10.G-H - CARTE INDAGINI DI DETTAGLIO

INDICE FIGURE E TABELLE RELAZIONE TECNICA

Figura 2-1: Schema acquisizioni prospezioni sismiche	21
Figura 2.2: Curva dispersione	23
Figura 2-3: Schema acquisizioni prospezioni sismiche	24
Figura 2.4: Modalità di generazione e propagazione microtremore	27
Figura 2.5: Confronto di intensità di rumori sismici sito specifici	28
Figura 2.6: Schema di sottosuolo a 2 strati con differenti parametri geomeccanici	29
Figura 3-1: Confronto shot break primi arrivi e dromocrone	34
Figura 3.2: Picking della curva di dispersione congiunta (MASW ZVF+THF)	36
Tabella 1.1: Individuazione e numerazione delle indagini	16
Tabella 2-1: Riepilogo geometria prospezioni sismiche	21
Tabella 2-2: Distanze punti di energizzazione dal primo geofono	21
Tabella 2-3: Riepilogo geometria prospezioni sismiche	25
Tabella 3-1: Riepilogo spessori e velocità sismostrati onde P ed SH	33
Tabella 3-2: Riepilogo risultati misure HVSR	38
INDICE FIGURE E TABELLE ALLEGATO TECNICO	
Allegato 1. 1: Sismografo Summit	44
Allegato 1. 2: Specifiche tecniche Sismografo Summit	45

Allegato 1. 3: Specifiche tecniche geofoni orizzontali 10 Hz – SENSOR NEDERLAND	46
Allegato 1. 4: Specifiche tecniche geofoni verticali 14 Hz – GEOSPACE	47
Allegato 1. 5: Specifiche tecniche geofoni verticali 4.5 Hz – RTC CLARK	48
Allegato 1. 6: Tromino Microtremori	49
Allegato 1. 7: Tromino Microtremori	50
Allegato 1. 8: Software Rayfract ver. 3.24 per tomografia sismica	51
Allegato 1. 9: Software Swan per tecnica MASW e REMI	52
Allegato 1. 10: Software WinMASW Academy 6.0 per tecnica MASW-REMI-ESAC e fa	ttore d
qualità	53
Allegato 1. 11: Software grilla per analisi microtremori	54
INDICE FIGURE E TABELLE ALLEGATI GRAFICI	
Fig. I-1: Ripresa fotografica ed inquadramento scala 1:5000	57
Fig. I-2: Stesa sismica 10_SR ONDE P – Dromocrone – Scala 1:300	67
Fig. I-3: Stesa sismica 10_SR ONDE P – Sezione Sismostratigrafica – Scala 1:300	68
Fig. I-4: Stesa sismica 10_SR ONDE P – Tomografia sismica - Scala 1:300	69
Fig. II-1: Ripresa fotografica ed inquadramento scala 1:5000	71
Fig. II-2:Stesa sismica	86
Fig. II-3: Stesa sismica 10_SR ONDE SH – Sezione Sismostratigrafica – Scala 1:300	87
Fig. II-4: Stesa sismica 10_SR ONDE SH – Tomografia sismica - Scala 1:300	88
Fig. III-1: Ripresa fotografica ed inquadramento scala 1:5000	90
Fig. III-2: Stesa sismica 22_SR ONDE P – Dromocrone – Scala 1:500	100
Fig. III-3: Stesa sismica 22_SR ONDE P – Sezione Sismostratigrafica – Scala 1:500	101
Fig. III-4: Stesa sismica 22_SR ONDE P – Tomografia sismica - Scala 1:500	102
Fig. IV-1: Ripresa fotografica ed inquadramento scala 1:5000	104
Fig. IV-2:Stesa sismica	119
Fig. IV-3: Stesa sismica 22_SR ONDE SH – Sezione Sismostratigrafica – Scala 1:500	120
Fig. IV-4: Stesa sismica 22_SR ONDE SH – Tomografia sismica - Scala 1:500	121
Fig. V-1: Ripresa fotografica ed inquadramento scala 1:5000	123
Fig. V-2: Stesa sismica 34_SR ONDE P – Dromocrone – Scala 1:500	133
Fig. V-3: Stesa sismica 34_SR ONDE P – Sezione Sismostratigrafica – Scala 1:500	134
Fig. V-4: Stesa sismica 34_SR ONDE P – Tomografia sismica - Scala 1:500	135
Fig. VI-1: Ripresa fotografica ed inquadramento scala 1:5000	137
Fig. VI-2:Stesa sismica	152
Fig. VI-3: Stesa sismica 34_SR ONDE SH – Sezione Sismostratigrafica – Scala 1:500	153
Fig. VI-4: Stesa sismica 34_SR ONDE SH – Tomografia sismica - Scala 1:500	154
Fig. VII-1: Ripresa fotografica ed inquadramento scala 1:5000	156
Fig. VII-2: Stesa sismica 39_SR ONDE P – Dromocrone – Scala 1:600	166

Fig. VII-3: Stesa sismica 39_SR ONDE P – Sezione Sismostratigrafica – Scala 1:600	.167
Fig. VII-4: Stesa sismica 39_SR ONDE P – Tomografia sismica - Scala 1:600	168
Fig. VIII-1: Ripresa fotografica ed inquadramento scala 1:5000	. 170
Fig. VIII-2:Stesa sismica 39_SR ONDE SH – Dromocrone – Scala 1:600	. 185
Fig. VIII-3: Stesa sismica 39_SR ONDE SH – Sezione Sismostratigrafica – Scala 1:600	.186
Fig. VIII-4: Stesa sismica 39_SR ONDE SH – Tomografia sismica - Scala 1:600	. 187
Fig. IX-1: Ripresa fotografica ed inquadramento scala 1:5000	.189
Fig. IX-2: Stesa sismica 46_SR ONDE P – Dromocrone – Scala 1:500	199
Fig. IX-3: Stesa sismica 46_SR ONDE P – Sezione Sismostratigrafica – Scala 1:500	200
Fig. IX-4: Stesa sismica 46_SR ONDE P – Tomografia sismica - Scala 1:500	201
Fig. X-1: Ripresa fotografica ed inquadramento scala 1:5000	203
Fig. X-2:Stesa sismica	218
Fig. X-3: Stesa sismica 46_SR ONDE SH – Sezione Sismostratigrafica – Scala 1:500	219
Fig. X-4: Stesa sismica 46_SR ONDE SH – Tomografia sismica - Scala 1:500	220
Fig. XI-1: Ripresa fotografica ed inquadramento scala 1:5000	222
Fig. XI-2: 11_MASW - Analisi MASW ZVF+THF - Sismogrammi (sinistra) - Spettri di velocità	con
picking	223
Fig. XI-3: 11_MASW - Analisi MASW ZVF+THF - Risultati del Best Model	224
Fig. XI-4: 11_MASW Analisi - MASW ZVF+THF - Profili di velocità (Mean Model)	225
Fig. XII-1: Ripresa fotografica ed inquadramento scala 1:5000	. 227
Fig. XII-2: 23_MASW - Analisi MASW ZVF+THF - Sismogrammi (sinistra) - Spettri di velocità	con
picking	228
Fig. XII-3: 23_MASW – Analisi MASW ZVF+THF – Risultati del Best Model	229
Fig. XII-4: 23_MASW - Analisi MASW ZVF+THF - Profili di velocità (Mean Model)	230
Fig. XIII-1: Ripresa fotografica ed inquadramento scala 1:5000	232
Fig. XIII-2: 35_MASW - Analisi MASW ZVF+THF - Sismogrammi (sinistra) - Spettri di velocità	con
picking	
Fig. XIII-3: 35_MASW – Analisi MASW ZVF+THF – Risultati del Best Model	234
Fig. XIII-4: 35_MASW - Analisi MASW ZVF+THF - Profili di velocità (Mean Model)	235
Fig. XIV-1: Ripresa fotografica ed inquadramento scala 1:5000	237
Fig. XIV-2: 40_MASW - Analisi MASW ZVF+THF - Sismogrammi (sinistra) - Spettri di velocità	con
picking	238
Fig. XIV-3: 40_MASW – Analisi MASW ZVF+THF – Risultati del Best Model	239
Fig. XIV-4: 40_MASW - Analisi MASW ZVF+THF - Profili di velocità (Mean Model)	240
Fig. XV-1: Ripresa fotografica ed inquadramento scala 1:5000	242
Fig. XV-2: 47_MASW - Analisi MASW ZVF+THF - Sismogrammi (sinistra) - Spettri di velocità	con
picking	
Fig. XV-3: 47_MASW - Analisi MASW ZVF+THF - Risultati del Best Model	244

Fig. XV-4: 47_MASW - Analisi MASW ZVF+THF - Profili di velocità (Mean Model)	245
Tab. I-1: Stesa sismica 10_SR ONDE P - Schema dettagliato	64
Tab. I-2: Stesa sismica 10_SR ONDE P - Punti energizzazione (SCOPPIO)	64
Tab. I-3: Stesa sismica 10_SR ONDE P - Tabella scoppi - primi arrivi	65
Tab. I-4:Stesa sismica 10_SR ONDE P – Sezione sismostratigrafica - Rifrattori spessori	e velocità
	66
Tab. II-1: Stesa sismica 10_SR ONDE SH - Schema dettagliato	83
Tab. II-2: Stesa sismica 10_SR ONDE SH - Punti energizzazione (SCOPPIO)	83
Tab. II-3: Stesa sismica 10_SR ONDE SH- Tabella scoppi - primi arrivi	84
Tab. II-4:Stesa sismica 10_SR ONDE SH – Sezione sismostratigrafica - Rifrattori spessori	e velocità
	85
Tab. III-1: Stesa sismica 22_SR ONDE P - Schema dettagliato	97
Tab. III-2: Stesa sismica 22_SR ONDE P - Punti energizzazione (SCOPPIO)	97
Tab. III-3: Stesa sismica 22_SR ONDE P - Tabella scoppi - primi arrivi	98
Tab. III-4:Stesa sismica 22_SR ONDE P – Sezione sismostratigrafica - Rifrattori spessori	e velocità
	99
Tab. IV-1: Stesa sismica 22_SR ONDE SH - Schema dettagliato	116
Tab. IV-2: Stesa sismica 22_SR ONDE SH - Punti energizzazione (SCOPPIO)	116
Tab. IV-3: Stesa sismica 22_SR ONDE SH- Tabella scoppi - primi arrivi	117
Tab. IV-4:Stesa sismica 22_SR ONDE SH – Sezione sismostratigrafica - Rifrattori spessori	e velocità
	118
Tab. V-1: Stesa sismica 34_SR ONDE P - Schema dettagliato	130
Tab. V-2: Stesa sismica 34_SR ONDE P - Punti energizzazione (SCOPPIO)	130
Tab. V-3: Stesa sismica 34_SR ONDE P - Tabella scoppi - primi arrivi	131
Tab. V-4:Stesa sismica 34_SR ONDE P – Sezione sismostratigrafica - Rifrattori spessori	e velocità
	132
Tab. VI-1: Stesa sismica 34_SR ONDE SH - Schema dettagliato	149
Tab. VI-2: Stesa sismica 34_SR ONDE SH - Punti energizzazione (SCOPPIO)	149
Tab. VI-3: Stesa sismica 34_SR ONDE SH- Tabella scoppi - primi arrivi	150
Tab. VI-4:Stesa sismica 34_SR ONDE SH – Sezione sismostratigrafica - Rifrattori spessori	e velocità
	151
Tab. VII-1: Stesa sismica 39_SR ONDE P - Schema dettagliato	163
Tab. VII-2: Stesa sismica 39_SR ONDE P - Punti energizzazione (SCOPPIO)	163
Tab. VII-3: Stesa sismica 39_SR ONDE P - Tabella scoppi - primi arrivi	164
Tab. VII-4:Stesa sismica 39_SR ONDE P – Sezione sismostratigrafica - Rifrattori spessori	e velocità
	165
Tab. VIII-1: Stesa sismica 39_SR ONDE SH - Schema dettagliato	182

Tab. VIII-2: Stesa sismica 39_SR ONDE SH - Punti energizzazione (SCOPPIO)	182
Tab. VIII-3: Stesa sismica 39_SR ONDE SH- Tabella scoppi - primi arrivi	183
Tab. VIII-4:Stesa sismica 39_SR ONDE SH - Sezione sismostratigrafica - Rifrattor	i spessori e
velocità	184
Tab. IX-1: Stesa sismica 46_SR ONDE P - Schema dettagliato	196
Tab. IX-2: Stesa sismica 46_SR ONDE P - Punti energizzazione (SCOPPIO)	196
Tab. IX-3: Stesa sismica 46_SR ONDE P - Tabella scoppi - primi arrivi	197
Tab. IX-4:Stesa sismica 46_SR ONDE P – Sezione sismostratigrafica - Rifrattori spess	ori e velocità
	198
Tab. X-1: Stesa sismica 46_SR ONDE SH - Schema dettagliato	215
Tab. X-2: Stesa sismica 46_SR ONDE SH - Punti energizzazione (SCOPPIO)	215
Tab. X-3: Stesa sismica 46_SR ONDE SH- Tabella scoppi - primi arrivi	216
Tab. X-4:Stesa sismica 46_SR ONDE SH – Sezione sismostratigrafica - Rifrattori spess	ori e velocità
	217

INDICE SISMOGRAMMI ALLEGATI GRAFICI

Sism.	I-1: 10_SR – Prova sismica a rifrazione onde P – Tiro E1 – Mazza	. 58
Sism.	I-2: 10_SR – Prova sismica a rifrazione onde P – Tiro A - Mazza	.58
Sism.	I-3: 10_SR – Prova sismica a rifrazione onde P – Tiro D1 - Mazza	. 59
Sism.	I-4: 10_SR – Prova sismica a rifrazione onde P – Tiro D2 - Mazza	. 59
Sism.	I-5: 10_SR – Prova sismica a rifrazione onde P – Tiro D3 - Mazza	60
Sism.	I-6: 10_SR – Prova sismica a rifrazione onde P – Tiro C - Mazza	60
Sism.	I-7: 10_SR – Prova sismica a rifrazione onde P – Tiro D4 - Mazza	61
Sism.	I-8: 10_SR – Prova sismica a rifrazione onde P – Tiro D5 - Mazza	61
Sism.	I-9: 10_SR – Prova sismica a rifrazione onde P – Tiro D6 - Mazza	62
Sism.	I-10: 10_SR – Prova sismica a rifrazione onde P – Tiro B - Mazza	62
Sism.	I-11: 10_SR – Prova sismica a rifrazione onde P – Tiro E2 - Mazza	63
Sism.	II-1: 10_SR – Prova sismica a rifrazione onde SH – Tiro E1 – S1 – Mazza	72
Sism.	II-2: 10_SR – Prova sismica a rifrazione onde SH – Tiro E1 – S2 - Mazza	.72
Sism.	II-3: 10_SR – Prova sismica a rifrazione onde SH – Tiro A – S1 - Mazza	.73
Sism.	II-4: 10_SR – Prova sismica a rifrazione onde SH – Tiro A – S2 - Mazza	.73
Sism.	II-5: 10_SR – Prova sismica a rifrazione onde SH – Tiro D1 – S1 - Mazza	.74
Sism.	II-6: 10_SR – Prova sismica a rifrazione onde SH – Tiro D1 – S2 - Mazza	.74
Sism.	II-7: 10_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S1 - Mazza	.75
Sism.	II-8: 10_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S2 - Mazza	.75
Sism.	II-9: 10_SR – Prova sismica a rifrazione onde SH – Tiro D3 – S1 - Mazza	.76
Sism.	II-10: 10_SR – Prova sismica a rifrazione onde SH – Tiro D3 – S2 - Mazza	.76
Sism.	II-11: 10_SR – Prova sismica a rifrazione onde SH – Tiro C – S1 - Mazza	. 77
Sism.	II-12: 10_SR – Prova sismica a rifrazione onde SH – Tiro C – S2 - Mazza	. 77
Sism.	II-13: 10_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S1 - Mazza	.78
Sism.	II-14: 10_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S2 - Mazza	.78
Sism.	II-15: 10_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S1 - Mazza	79
Sism.	II-16: 10_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S2 - Mazza	.79
Sism.	II-17: 10_SR – Prova sismica a rifrazione onde SH – Tiro D6 – S1 - Mazza	.80
Sism.	II-18: 10_SR – Prova sismica a rifrazione onde SH – Tiro D6 – S2 - Mazza	.80
Sism.	II-19: 10_SR – Prova sismica a rifrazione onde SH – Tiro B – S1 - Mazza	81
Sism.	II-20: 10_SR – Prova sismica a rifrazione onde SH – Tiro B – S2 - Mazza	81
Sism.	II-21: 10_SR – Prova sismica a rifrazione onde SH – Tiro E2 – S1 - Mazza	82
Sism.	II-22: 10_SR – Prova sismica a rifrazione onde SH – Tiro E2 – S1- Mazza	82
Sism.	III-1: 22_SR – Prova sismica a rifrazione onde P – Tiro E1 – Mazza	91
Sism.	III-2: 22_SR – Prova sismica a rifrazione onde P – Tiro A - Mazza	91
Sism.	III-3: 22_SR – Prova sismica a rifrazione onde P – Tiro D1 - Mazza	92
Sism.	III-4: 22_SR – Prova sismica a rifrazione onde P – Tiro D2 - Mazza	92

Sism.	III-5: 22_SR – Prova sismica a rifrazione onde P – Tiro D3 - Mazza	93
Sism.	III-6: 22_SR – Prova sismica a rifrazione onde P – Tiro C - Mazza	93
Sism.	III-7: 22_SR – Prova sismica a rifrazione onde P – Tiro D4 - Mazza	94
Sism.	III-8: 22_SR – Prova sismica a rifrazione onde P – Tiro D5 - Mazza	94
Sism.	III-9: 22_SR – Prova sismica a rifrazione onde P – Tiro D6 - Mazza	95
Sism.	III-10: 22_SR – Prova sismica a rifrazione onde P – Tiro B - Mazza	95
Sism.	III-11: 22_SR – Prova sismica a rifrazione onde P – Tiro E2 - Mazza	96
Sism.	IV-1: 22_SR – Prova sismica a rifrazione onde SH – Tiro E1 – S1 – Mazza	105
Sism.	IV-2: 22_SR – Prova sismica a rifrazione onde SH – Tiro E1 – S2 - Mazza	105
Sism.	IV-3: 22_SR – Prova sismica a rifrazione onde SH – Tiro A – S1 - Mazza	106
Sism.	IV-4: 22_SR – Prova sismica a rifrazione onde SH – Tiro A – S2 - Mazza	106
Sism.	IV-5: 22_SR – Prova sismica a rifrazione onde SH – Tiro D1 – S1 - Mazza	107
Sism.	IV-6: 22_SR – Prova sismica a rifrazione onde SH – Tiro D1 – S2 - Mazza	107
Sism.	IV-7: 22_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S1 - Mazza	108
Sism.	IV-8: 22_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S2 - Mazza	108
Sism.	IV-9: 22_SR – Prova sismica a rifrazione onde SH – Tiro D3 – S1 - Mazza	109
Sism.	IV-10: 22_SR – Prova sismica a rifrazione onde SH – Tiro D3 – S2 - Mazza	109
Sism.	IV-11: 22_SR – Prova sismica a rifrazione onde SH – Tiro C – S1 - Mazza	110
Sism.	IV-12: 22_SR – Prova sismica a rifrazione onde SH – Tiro C – S2 - Mazza	110
Sism.	IV-13: 22_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S1 - Mazza	111
Sism.	IV-14: 22_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S2 - Mazza	111
Sism.	IV-15: 22_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S1 - Mazza	112
Sism.	IV-16: 22_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S2 - Mazza	112
Sism.	IV-17: 22_SR – Prova sismica a rifrazione onde SH – Tiro D6 – S1 - Mazza	113
Sism.	IV-18: 22_SR – Prova sismica a rifrazione onde SH – Tiro D6 – S2 - Mazza	113
Sism.	IV-19: 22_SR – Prova sismica a rifrazione onde SH – Tiro B – S1 - Mazza	114
Sism.	IV-20: 22_SR – Prova sismica a rifrazione onde SH – Tiro B – S2 - Mazza	114
Sism.	IV-21: 22_SR – Prova sismica a rifrazione onde SH – Tiro E2 – S1 - Mazza	115
Sism.	IV-22: 22_SR – Prova sismica a rifrazione onde SH – Tiro E2 – S1- Mazza	115
Sism.	V-1: 34_SR – Prova sismica a rifrazione onde P – Tiro E1 – Mazza	124
Sism.	V-2: 34_SR – Prova sismica a rifrazione onde P – Tiro A - Mazza	124
Sism.	V-3: 34_SR – Prova sismica a rifrazione onde P – Tiro D1 - Mazza	125
Sism.	V-4: 34_SR – Prova sismica a rifrazione onde P – Tiro D2 - Mazza	125
Sism.	V-5: 34_SR – Prova sismica a rifrazione onde P – Tiro D3 - Mazza	126
Sism.	V-6: 34_SR – Prova sismica a rifrazione onde P – Tiro C - Mazza	126
Sism.	V-7: 34_SR – Prova sismica a rifrazione onde P – Tiro D4 - Mazza	127
Sism.	V-8: 34_SR – Prova sismica a rifrazione onde P – Tiro D5 - Mazza	127
Sism.	V-9: 34_SR – Prova sismica a rifrazione onde P – Tiro D6 - Mazza	128

Sism.	V-10: 34_SR – Prova sismica a rifrazione onde P – Tiro B - Mazza	128
Sism.	V-11: 34_SR – Prova sismica a rifrazione onde P – Tiro E2 - Mazza	129
Sism.	VI-1: 34_SR – Prova sismica a rifrazione onde SH – Tiro E1 – S1 – Mazza	138
Sism.	VI-2: 34_SR – Prova sismica a rifrazione onde SH – Tiro E1 – S2 - Mazza	138
Sism.	VI-3: 34_SR – Prova sismica a rifrazione onde SH – Tiro A – S1 - Mazza	139
Sism.	VI-4: 34_SR – Prova sismica a rifrazione onde SH – Tiro A – S2 - Mazza	139
Sism.	VI-5: 34_SR – Prova sismica a rifrazione onde SH – Tiro D1 – S1 - Mazza	140
Sism.	VI-6: 34_SR – Prova sismica a rifrazione onde SH – Tiro D1 – S2 - Mazza	140
Sism.	VI-7: 34_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S1 - Mazza	141
Sism.	VI-8: 34_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S2 - Mazza	141
Sism.	VI-9: 34_SR – Prova sismica a rifrazione onde SH – Tiro D3 – S1 - Mazza	142
Sism.	VI-10: 34_SR – Prova sismica a rifrazione onde SH – Tiro D3 – S2 - Mazza	142
Sism.	VI-11: 34_SR – Prova sismica a rifrazione onde SH – Tiro C – S1 - Mazza	143
Sism.	VI-12: 34_SR – Prova sismica a rifrazione onde SH – Tiro C – S2 - Mazza	143
Sism.	VI-13: 34_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S1 - Mazza	144
Sism.	VI-14: 34_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S2 - Mazza	144
Sism.	VI-15: 34_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S1 - Mazza	145
Sism.	VI-16: 34_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S2 - Mazza	145
Sism.	VI-17: 34_SR – Prova sismica a rifrazione onde SH – Tiro D6 – S1 - Mazza	146
Sism.	VI-18: 34_SR – Prova sismica a rifrazione onde SH – Tiro D6 – S2 - Mazza	146
Sism.	VI-19: 34_SR – Prova sismica a rifrazione onde SH – Tiro B – S1 - Mazza	147
Sism.	VI-20: 34_SR – Prova sismica a rifrazione onde SH – Tiro B – S2 - Mazza	147
Sism.	VI-21: 34_SR – Prova sismica a rifrazione onde SH – Tiro E2 – S1 - Mazza	148
Sism.	VI-22: 34_SR – Prova sismica a rifrazione onde SH – Tiro E2 – S1- Mazza	148
Sism.	VII-1: 39_SR – Prova sismica a rifrazione onde P – Tiro E1 – Mazza	157
Sism.	VII-2: 39_SR – Prova sismica a rifrazione onde P – Tiro A - Mazza	157
Sism.	VII-3: 39_SR – Prova sismica a rifrazione onde P – Tiro D1 - Mazza	158
Sism.	VII-4: 39_SR – Prova sismica a rifrazione onde P – Tiro D2 - Mazza	158
Sism.	VII-5: 39_SR – Prova sismica a rifrazione onde P – Tiro D3 - Mazza	159
Sism.	VII-6: 39_SR – Prova sismica a rifrazione onde P – Tiro C - Mazza	159
Sism.	VII-7: 39_SR – Prova sismica a rifrazione onde P – Tiro D4 - Mazza	160
Sism.	VII-8: 39_SR – Prova sismica a rifrazione onde P – Tiro D5 - Mazza	160
Sism.	VII-9: 39_SR – Prova sismica a rifrazione onde P – Tiro D6 - Mazza	161
Sism.	VII-10: 39_SR – Prova sismica a rifrazione onde P – Tiro B - Mazza	161
Sism.	VII-11: 39_SR – Prova sismica a rifrazione onde P – Tiro E2 - Mazza	162
Sism.	VIII-1: 39_SR – Prova sismica a rifrazione onde SH – Tiro E1 – S1 – Mazza	171
Sism.	VIII-2: 39_SR – Prova sismica a rifrazione onde SH – Tiro E1 – S2 - Mazza	171
Sism.	VIII-3: 39_SR – Prova sismica a rifrazione onde SH – Tiro A – S1 - Mazza	172

Sism.	VIII-4: 39_SR – Prova sismica a rifrazione onde SH – Tiro A – S2 - Mazza	. 172
Sism.	VIII-5: 39_SR – Prova sismica a rifrazione onde SH – Tiro D1 – S1 - Mazza	. 173
Sism.	VIII-6: 39_SR – Prova sismica a rifrazione onde SH – Tiro D1 – S2 - Mazza	. 173
Sism.	VIII-7: 39_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S1 - Mazza	. 174
Sism.	VIII-8: 39_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S2 - Mazza	. 174
Sism.	VIII-9: 39_SR – Prova sismica a rifrazione onde SH – Tiro D3 – S1 - Mazza	. 175
Sism.	VIII-10: 39_SR – Prova sismica a rifrazione onde SH – Tiro D3 – S2 - Mazza	. 175
Sism.	VIII-11: 39_SR – Prova sismica a rifrazione onde SH – Tiro C – S1 - Mazza	. 176
Sism.	VIII-12: 39_SR – Prova sismica a rifrazione onde SH – Tiro C – S2 - Mazza	. 176
Sism.	VIII-13: 39_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S1 - Mazza	. 177
Sism.	VIII-14: 39_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S2 - Mazza	. 177
Sism.	VIII-15: 39_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S1 - Mazza	. 178
Sism.	VIII-16: 39_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S2 - Mazza	. 178
Sism.	VIII-17: 39_SR – Prova sismica a rifrazione onde SH – Tiro D6 – S1 - Mazza	. 179
Sism.	VIII-18: 39_SR – Prova sismica a rifrazione onde SH – Tiro D6 – S2 - Mazza	. 179
Sism.	VIII-19: 39_SR – Prova sismica a rifrazione onde SH – Tiro B – S1 - Mazza	. 180
Sism.	VIII-20: 39_SR – Prova sismica a rifrazione onde SH – Tiro B – S2 - Mazza	. 180
Sism.	VIII-21: 39_SR – Prova sismica a rifrazione onde SH – Tiro E2 – S1 - Mazza	. 181
Sism.	VIII-22: 39_SR – Prova sismica a rifrazione onde SH – Tiro E2 – S1- Mazza	. 181
Sism.	IX-1: 46_SR – Prova sismica a rifrazione onde P – Tiro E1 – Mazza	. 190
Sism.	IX-2: 46_SR – Prova sismica a rifrazione onde P – Tiro A - Mazza	. 190
Sism.	IX-3: 46_SR – Prova sismica a rifrazione onde P – Tiro D1 - Mazza	. 191
Sism.	IX-4: 46_SR – Prova sismica a rifrazione onde P – Tiro D2 - Mazza	. 191
Sism.	IX-5: 46_SR – Prova sismica a rifrazione onde P – Tiro D3 - Mazza	. 192
Sism.	IX-6: 46_SR – Prova sismica a rifrazione onde P – Tiro C - Mazza	. 192
Sism.	IX-7: 46_SR – Prova sismica a rifrazione onde P – Tiro D4 - Mazza	. 193
Sism.	IX-8: 46_SR – Prova sismica a rifrazione onde P – Tiro D5 - Mazza	. 193
Sism.	IX-9: 46_SR – Prova sismica a rifrazione onde P – Tiro D6 - Mazza	. 194
Sism.	IX-10: 46_SR – Prova sismica a rifrazione onde P – Tiro B - Mazza	. 194
Sism.	IX-11: 46_SR – Prova sismica a rifrazione onde P – Tiro E2 - Mazza	. 195
Sism.	X-1: 46_SR – Prova sismica a rifrazione onde SH – Tiro E1 – S1 – Mazza	. 204
Sism.	X-2: 46_SR – Prova sismica a rifrazione onde SH – Tiro E1 – S2 - Mazza	. 204
Sism.	X-3: 46_SR – Prova sismica a rifrazione onde SH – Tiro A – S1 - Mazza	. 205
Sism.	X-4: 46_SR – Prova sismica a rifrazione onde SH – Tiro A – S2 - Mazza	. 205
Sism.	X-5: 46_SR – Prova sismica a rifrazione onde SH – Tiro D1 – S1 - Mazza	. 206
Sism.	X-6: 46_SR – Prova sismica a rifrazione onde SH – Tiro D1 – S2 - Mazza	. 206
Sism.	X-7: 46_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S1 - Mazza	. 207
Sism.	X-8: 46_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S2 - Mazza	. 207

Sism.	X-9: 46_SR – Prova sismica a rifrazione onde SH – Tiro D3 – S1 - Mazza	208
Sism.	X-10: 46_SR – Prova sismica a rifrazione onde SH – Tiro D3 – S2 - Mazza	208
Sism.	X-11: 46_SR – Prova sismica a rifrazione onde SH – Tiro C – S1 - Mazza	209
Sism.	X-12: 46_SR – Prova sismica a rifrazione onde SH – Tiro C – S2 - Mazza	209
Sism.	X-13: 46_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S1 - Mazza	210
Sism.	X-14: 46_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S2 - Mazza	210
Sism.	X-15: 46_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S1 - Mazza	211
Sism.	X-16: 46_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S2 - Mazza	211
Sism.	X-17: 46_SR – Prova sismica a rifrazione onde SH – Tiro D6 – S1 - Mazza	212
Sism.	X-18: 46_SR – Prova sismica a rifrazione onde SH – Tiro D6 – S2 - Mazza	212
Sism.	X-19: 46_SR – Prova sismica a rifrazione onde SH – Tiro B – S1 - Mazza	213
Sism.	X-20: 46_SR – Prova sismica a rifrazione onde SH – Tiro B – S2 - Mazza	213
Sism.	X-21: 46_SR – Prova sismica a rifrazione onde SH – Tiro E2 – S1 - Mazza	214
Sism	X-22: 46 SR – Prova sismica a rifrazione onde SH – Tiro F2 – S1- Mazza	214

INDAGINI GEOFISICHE INTEGRATE DI CARATTERIZZAZIONE SISMICA DEI TERRENI

1 Introduzione

1.1 Premesse

Il presente documento riferisce sulle prove geofisiche, di tipo sismico attivo e passivo, condotte a supporto degli studi di microzonazione sismica di livello 1 del Comune di Fiesole (FI).

Lo studio di microzonazione sismica (MS) di livello 1 rappresenta un livello propedeutico a successivi studi di MS (livello 2 e 3) e consiste in una raccolta organica e ragionata dei dati di natura geologica, geofisica e geotecnica preesistenti e/o acquisite al fine di suddividere il territorio comunale in microzone qualitativamente omogenee dal punto di vista del comportamento sismico.

Tale approfondimento è finalizzato alla realizzazione della Carta delle microzone omogenee in prospettiva sismica (MOPS) e quindi alla valutazione della pericolosità con la finalità di guidare le scelte nella pianificazione attuativa, nell'ottica di perseguire ed assicurare la riduzione del rischio sismico, evidenziando le criticità e identificando le aree per le quali sono richiesti studi di approfondimento.

1.2 Contesto

Le indagini geofisiche integrate, sono state eseguite all'interno del territorio del comune di Fiesole.

Si rimanda alle Tav. QS.G10.C/D per l'inquadramento delle indagini e alla Tav. QS.G10.G/H per l'inquadramento di dettaglio delle stesse.

1.3 Scopo delle indagini

La caratterizzazione sismica-dinamica del terreno, è stata eseguita attraverso prove geofisiche integrate e complementari fra loro, di cui:

- 5 sismiche a rifrazione con onde P ed onde SH, con restituzione secondo tecniche di analisi a rifrazione classica e tomografica, delle velocità Vp e Vs nel sottosuolo;
- 5 Prove MASW (Multistation Analysis of Surface Waves), per determinazione di profili di velocità Vs nel sottosuolo, che hanno permesso di ottenere la classificazione del sottosuolo ai sensi della vigente normativa NCT 2018 "Norme Tecniche per le Costruzione DM 17/01/2018"
- 42 prospezioni geofisiche con acquisizione ed analisi dei microtremori (HVSR), e con processo di inversione e interpretazione secondo la metodologia di analisi del rapporto spettrale H/V o di Nakamura, per determinare l'eventuale comportamento amplificativo del terreno.

1.4 Scelta delle zone oggetto delle indagini

Le indagini sono state effettuate nel comprensorio del comune di Fiesole (FI); nella tabella seguente si evidenzia la tipologia delle indagini:

Tabella 1.1: Individuazione e numerazione delle indagini

ID			HVSR	TOMO P+SH	ESAC	MASW	DH
1	01 HVSR		Х				
2	02_HVSR		Х				
3	03 HVSR		Х				
4	04_HVSR		Х				
5	05_HVSR		Х				
6	06 HVSR	CAPOLUOGO	X				
7	07 HVSR		X				
8	08 HVSR		X				
9	09 HVSR		X	1			
10	10_SR			х			
11	11 MASW					Х	
12	12_HVSR		Х	1			
13	13_HVSR		X				
14	14 HVSR	GIRONE - ANCHETTA	X				
15	15 HVSR		X				
16	16_HVSR		X	1			
17	17_HVSR		X				
18	18_HVSR		X	1			
19	19 HVSR		X				
20	20 HVSR	COMPIOBBI - ELLERA	X				
21	21_HVSR		X	1			
22	22_SR		~	Х			
23	23_MASW					Х	
24	24_HVSR		Х				
25	25 HVSR	MONTEBENI	X	1			
26	27 HVSR		X				
27	28 HVSR		X	1			
28	29 HVSR	OLMO	X				
29	30_HVSR		Х				
30	31_HVSR		Х				
31	32 HVSR		Х				
32	33 HVSR	PIAN DI SAN BARTOLO	X				
33	34 SR			Х			
34	35 MASW					Х	
35	36_HVSR		Х				
36	37_HVSR		X				
37	38_HVSR	PIAN DI MUGNONE	X				
38	39_SR			х			
39	40 MASW					Х	
40	41_HVSR		Х				
41	42_HVSR		X				
42	43_HVSR		X				
43	44_HVSR	CALDINE	X				
44	45_HVSR	G. ILDIIVE	X				
45	46_SR			х			
46	47_MASW					Х	
47	48_HVSR		Х				
48	49_HVSR	QUERCIOLA	X				
49	50_HVSR		X				
50	51_HVSR		X				
51	52 HVSR	PONTE ALLA BADIA - SAN DOMENICO	X				
52	53_HVSR		X				
				1			

1.5 Descrizione dei contenuti della relazione

La presente relazione illustrerà la metodologia di acquisizione, la strumentazione utilizzata, le tecniche e modalità di inversione/interpretazione, e verranno evidenziati i risultati ottenuti con la campagna di prospezione geofisica sismica integrata, a supporto della caratterizzazione sismica del sottosuolo relativamente alle diverse aree di indagine.

Dopo un quadro descrittivo delle tecniche di indagine, riportate nel Capitolo 2 (Caratterizzazione sismica), si riportano le modalità di interpretazione ed analisi dei dati acquisiti e i risultati, di cui al Capitolo 3 (Elaborazione dati e risultati).

Glossario e riferimenti bibliografici sono forniti rispettivamente nei capitoli 4 e 5.

Il documento è poi completato con tre allegati contenenti rispettivamente:

- ALLEGATO TECNICO, in cui sono riportate le specifiche tecniche degli strumenti, dei sensori e dei software di acquisizione ed analisi utilizzati;
- ALLEGATI GRAFICI, in cui sono riportati in dettaglio l'inquadramento, i dati acquisiti, la loro elaborazione ed i risultati ottenuti, in particolare stese sismiche a rifrazione e prove MASW;
- ALLEGATO GRAFICO in cui sono riportati i risultati delle acquisizioni dei microtremori (HVSR).

2 Caratterizzazione sismica

Ai fini di una completa caratterizzazione sismica delle aree oggetto di indagine, i dati sono stati acquisiti secondo modalità che hanno permesso l'inversione ed interpretazione sequenziale e correlata, secondo diverse tecniche di cui:

- 1. Sismica a rifrazione e tomografia sismica con restituzione di sismostrati secondo metodi classici di elaborazione a rifrazione, Plus-Minus, Wavefront e CMP "Intercept Time Refraction", e profilo tomografico 2D delle onde di compressione Vp;
- 2. Sismica a rifrazione e tomografia sismica con restituzione di sismostrati secondo metodi classici di elaborazione a rifrazione, Plus-Minus, Wavefront e CMP "Intercept Time Refraction", e profilo tomografico 2D delle onde di taglio SH;
- 3. Tecnica MASW (Multichannel Analysis of Surface Waves) che sono una derivazione delle tecniche SASW (Spectral Analysis of Surface Waves) che si basano sull'elaborazione delle proprietà spettrali delle onde di superficie per la costruzione di un modello monodimensionale verticale di velocità di propagazione delle onde di taglio Vs;
- 4. Prospezioni geofisiche con acquisizione ed analisi dei microtremori (HVSR), e con processo di inversione e interpretazione secondo la metodologia di analisi del rapporto spettrale H/V o di Nakamura, per determinare l'eventuale comportamento amplificativo del terreno.

2.1 Sismica a rifrazione

Le onde elastiche provocate da una vibrazione si trasmettono nel suolo con velocità differenti per ogni litotipo, per cui nella prospezione sismica a rifrazione, si sfrutta la diversa velocità di propagazione delle onde longitudinali (onde P o "di compressione e dilatazione") o trasversali (onde SH o "di taglio") per determinare spessori e andamento dei livelli presenti.

La tecnica di indagine consiste nel generare un'onda sismica di compressione o di taglio nel terreno attraverso una determinata sorgente di energia (colpo di mazza o di maglio, esplosivo etc.) e nel misurare il tempo impiegato da detta onda a compiere il percorso nel sottosuolo dal punto di energizzazione fino ai sensori di rilevazione (geofoni) secondo le leggi di rifrazione dell'ottica (Legge di Snell), nel rifrangendosi sulle superfici di separazione tra due strati sovrapposti di densità (o meglio di modulo elastico) crescente.

La rifrazione si basa sull'analisi, secondo diversi modelli dei primi arrivi rispetto a geofoni posti a distanze diverse dalla sorgente energizzante, per ricostruire una serie di curve tempodistanza (dromocrone).

Attraverso metodi analitici si ricavano quindi le velocità delle onde elastiche longitudinali (Vp) o trasversali (Vs) dei mezzi attraversati ed il loro spessore.

La velocità di propagazione delle onde elastiche nel suolo è compresa tra larghi limiti.

Per lo stesso tipo di materiale, può variare in funzione di numerosi parametri quali il grado di alterazione, di fessurazione e/o di fratturazione per i materiali litoidi, ed in funzione dello stato di consistenza/addensamento, grado di saturazione, per i materiali granulari e fini.

Sensibili differenze si possono avere, anche con riferimento all'assetto morfologico rispetto alle velocità rilevate lungo i piani di strato e quelle rilevate perpendicolarmente a questi.

Inoltre la velocità delle onde P compressionali, rispetto alle SH trasversali, è fortemente influenzata dalla presenza di eventuale acquifero e/o dal grado di saturazione.

Questo comporta che anche litotipi differenti possano avere uguali velocità delle onde sismiche compressionali (ad esempio roccia fortemente fratturata e materiale detritico saturo con velocità Vp dell'ordine di 1400÷1700 m/sec), per cui non necessariamente l'interpretazione sismostratigrafica corrisponderà con la reale situazione geologico-stratigrafica.

Il metodo sismico a rifrazione è soggetto inoltre alle seguenti limitazioni:

- a. un livello potrà essere evidenziato soltanto se la velocità di trasmissione delle onde longitudinali in esso risulterà superiore a quella dei livelli soprastanti (effetto della inversione di velocità);
- b. un livello di spessore limitato rispetto al passo dei geofoni e alla sua profondità può non risultare rilevabile:
- c. un livello di velocità intermedia compreso tra uno strato sovrastante a velocità minore ed uno sottostante a velocità sensibilmente maggiore può non risultare rilevabile perché mascherato dagli "arrivi" dallo strato sottostante (effetto dello strato nascosto e "zona oscura");
- d. aumentando la spaziatura tra i geofoni aumenta la profondità di investigazione, ma può

ovviamente ridursi la precisione nella determinazione della profondità dei limiti di passaggio tra i diversi livelli individuati. In presenza di successioni di livelli con velocità (crescenti) di poco differenti tra loro, orizzonti a velocità intermedia con potenza sino anche ad 1/3 del passo adottato possono non essere evidenziati. Il limite tra due orizzonti può quindi in realtà passare "attraverso" un terzo intermedio non evidenziabile;

e. analogamente, incrementi graduali di velocità con la profondità danno origine a dromocrone che consentono più schemi interpretativi. Il possibile errore può essere più contenuto potendo disporre di sondaggi di taratura e "cercando" sulle dromocrone delle basi sismiche i livelli che abbiano velocità il più possibile simili a quelle ottenute con le tarature.

2.2 Tomografia sismica in onde P ed SH

La tomografia sismica, per raggi diretti, è una tecnica d'indagine che permette l'individuazione di anomalie nella velocità di propagazione delle onde sismiche con un potere risolutivo nettamente superiore ad altri metodi, offrendo la possibilità della ricostruzione, con elevato grado di qualità, di anomalie stratigrafiche, anche particolarmente complesse non risolvibili con differenti tecniche d'indagine.

Per le procedure di realizzazione di immagini tomografiche è necessario utilizzare un maggior numero di sorgenti di energizzazione e di punti di ricezione delle onde sismiche, che permettano una distribuzione dei raggi sismici omogenea e con una densità che viene predefinita in funzione del "target" da raggiungere.

Le tecniche operative possono essere molto diverse, si può infatti operare:

- a livello del piano di campagna disponendo i ricevitori (geofoni e idrofoni) ed i trasmettitori (punti di scoppio) su linee parallele;
- utilizzando due fori, residui di sondaggi geognostici, (tomografia cross-hole), dove previo opportuno condizionamento si alloggiano i ricevitori ed i trasmettitori;
- utilizzando un solo foro (sondaggio sismico tomografico), in cui sono alloggiati i ricevitori, eseguendo una serie di tiri a distanze crescenti dall'imboccatura del foro stesso.

Per il trattamento dei dati per la ricostruzione tomografica dell'immagine si utilizza una suddivisione dell'area di studio in celle elementari, calcolando per ciascuna di queste un valore di velocità congruente con il tempo di tragitto medio relativo ai percorsi dei raggi sismici che le attraversano; la presentazione delle elaborazioni eseguite dà come risultato una mappa della distribuzione delle velocità sismiche in una sezione piana contenente le sorgenti ed i geofoni.

Le classiche prospezioni sismiche si basano sul concetto che le onde acustiche si propagano nei diversi mezzi con velocità differenti.

Generando tali onde in un punto (detto di scoppio) e osservando i loro tempi di arrivo in altri punti predeterminati (detti di registrazione), è possibile ricostruire la distribuzione di velocità e con questa definire dal punto di vista elastico le aree oggetto di studio e individuare anomalie o corpi anomali.

L'applicazione della tecnica tomografica alle misure sismiche permette poi di ricostruire l'andamento di tale caratteristica fisica all'interno di una porzione di spazio non accessibile direttamente e di ottenere come risultati, immagini che visualizzano le non omogeneità incontrate nel mezzo.

Il risultato finale sarà la rappresentazione delle velocità (in m/s) per piani o sezioni indagate, poi ricostruite in 3D, secondo una scala cromatica prefissata, che in genere va dal blu (basse velocità) al magenta (alte velocità). Quanto più il mezzo attraversato dal suono è rigido e incomprimibile, tanto maggiore sarà la sua velocità caratteristica.

Valori bassi della velocità mettono in evidenza la variazione negativa delle caratteristiche elastiche e meccaniche, indicando la presenza di un possibile deterioramento della struttura interna.

2.3 Strumentazione e metodologia per sismica a rifrazione e tecnica tomografica

La strumentazione impiegata per le indagini sismiche a rifrazione e per la tecnica tomografica è la seguente:

Onde P:

- <u>Sismografo</u>: amplificatore sismico DMT COMPACT a 24 canali con 24 bit di precisione nella conversione A/D;
- Sorgente: mazza triggerata da 8 kg su piastra di duralluminio e/o maglio battente e/o fucile sismico;
- Ricevitori: Geofoni ad asse verticale GEOSPACE GS-20DX 14 Hz;
- <u>Tempo di campionamento</u>: 1 ms;
- Periodo di acquisizione: 1024 campioni, pari a 1 s.

Onde SH:

- <u>Sismografo</u>: amplificatore sismico DMT COMPACT a 24 canali con 24 bit di precisione nella conversione A/D;
- Sorgente: mazza triggerata da 8 kg su trave in PEAD con battuta coniugata S1 e S2;
- Ricevitori: Geofoni ad asse orizzontale SM-6/U-B 10 Hz SENSOR NEDERLAND b.v;
- Tempo di campionamento: 1 ms;
- Periodo di acquisizione: 1024 campioni, pari a 1 s.

Sono state effettuate 15 prospezioni sismiche a rifrazione a 24 geofoni , in onde P e onde SH, come da schema seguente:

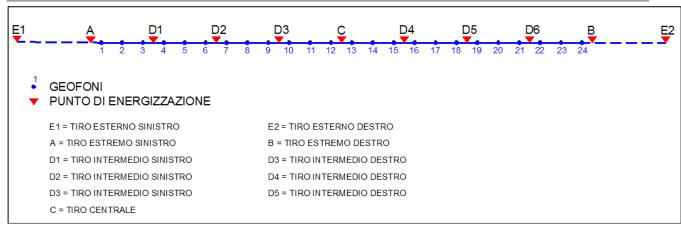


Figura 2-1: Schema acquisizioni prospezioni sismiche

Le lunghezze totali, le distanze intergeofoniche e le distanze dei punti di energizzazione rispetto al primo geofono per ognuna delle prospezioni sono riassunte nelle seguenti tabelle:

INDAGINE [n°]	DISTANZA INTERGEOFONICA [m]	LUNGHEZZA STENDIMENTO [m]			
10_SR	2.5	57.5			
22_SR	4	92			
34_SR	4	92			
39_SR	5	115			
46_SR	4	92			

Tabella 2-1: Riepilogo geometria prospezioni sismiche

Tabella 2-2: Distanze punti di energizzazione dal primo geofono

	E1	Α	D1	D2	D3	С	D4	D5	D6	В	E2
10_SR - PASSO 2.5 m	-12.5	-1.25	6.25	13.75	21.25	28.75	36.25	43.75	51.25	58.75	70.00
22_SR - PASSO 4 m	-20.0	-2.0	10.0	22.0	34.0	46.0	58.0	70.0	82.0	94.0	112.0
34_SR - PASSO 4 m	-20.0	-2.0	10.0	22.0	34.0	46.0	58.0	70.0	82.0	94.0	112.0
39_SR - PASSO 5 m	-25.0	-2.5	12.5	27.5	42.5	57.5	72.5	87.5	102.5	117.5	140.0
46_SR - PASSO 4 m	-20.0	-2.0	10.0	22.0	34.0	46.0	58.0	70.0	82.0	94.0	112.0

2.4 Prospezione sismica attiva frequenziale - tecnica MASW

Il principio ispiratore della tecnica MASW è il carattere dispersivo delle onde di Rayleigh e di Love quando queste si propagano in un mezzo stratificato.

La dispersione consiste nella variazione della velocità di fase a diverse frequenze, con

l'aumento della lunghezza d'onda (abbassamento di frequenza) la profondità coinvolta dalla propagazione dell'onda è via via maggiore.

È quindi possibile, impiegando onde di un certo intervallo di frequenza, caratterizzare le proprietà acustiche dei terreni sino ad una certa profondità.

Nella maggior parte delle indagini sismiche per le quali si utilizzano le onde compressive, più di due terzi dell'energia sismica totale generata viene trasmessa nella forma di onde di Rayleigh, la componente principale delle onde superficiali.

Ipotizzando una variazione di velocità dei terreni in senso verticale, ciascuna componente di frequenza dell'onda superficiale ha una diversa velocità di propagazione (chiamata velocità di fase) che, a sua volta, corrisponde ad una diversa lunghezza d'onda per ciascuna frequenza che si propaga. Questa proprietà si chiama dispersione.

Sebbene le onde superficiali siano considerate rumore per le indagini sismiche che utilizzano le onde di corpo (riflessione e rifrazione), la loro proprietà dispersiva può essere utilizzata per studiare le proprietà elastiche dei terreni superficiali.

La costruzione di un profilo verticale di velocità delle onde di taglio (Vs), ottenuto dall'analisi delle onde piane della modalità fondamentale delle onde di Rayleigh è una delle pratiche più comuni per utilizzare le proprietà dispersive delle onde superficiali.

Questo tipo di analisi fornisce i parametri fondamentali comunemente utilizzati per valutare la rigidezza superficiale, una proprietà critica per molti studi geotecnici.

L'intero processo comprende tre passi successivi:

- L'acquisizione delle onde superficiali (ground roll);
- la costruzione di una curva di dispersione (il grafico della velocità di fase rispetto alla frequenza);
- l'inversione della curva di dispersione per ottenere il profilo verticale delle Vs.

Per ottenere un profilo Vs bisogna produrre un treno d'onde superficiali a banda larga e registrarlo minimizzando il rumore.

Una molteplicità di tecniche diverse sono state utilizzate nel tempo per ricavare la curva di dispersione, ciascuna con i suoi vantaggi e svantaggi, in quanto l'inversione della curva di dispersione viene realizzata iterativamente, utilizzando la curva di dispersione misurata come riferimento sia per la modellizzazione diretta che per la procedura ai minimi quadrati.

Dei valori preliminari per il rapporto di Poisson e per la densità sono necessari per ottenere il profilo verticale Vs dalla curva di dispersione e vengono solitamente stimati utilizzando misure prese in loco o valutando le tipologie dei materiali.

Le onde superficiali riverberate (back scattered) possono essere prevalenti in un sismogramma multicanale se in prossimità delle misure sono presenti discontinuità orizzontali quali fondazioni e muri di contenimento. Le ampiezze relative di ciascuna tipologia di rumore generalmente cambiano con la frequenza e la distanza dalla sorgente.

Ciascun rumore, inoltre, ha diverse velocità e proprietà di attenuazione che possono essere

identificate sulla registrazione multicanale grazie all'utilizzo di modelli di coerenza e in base ai tempi di arrivo e all'ampiezza di ciascuno.

La scomposizione di un campo di onde registrate in un formato a frequenza variabile consente l'identificazione della maggior parte del rumore, analizzando la fase e la frequenza dipendentemente dalla distanza dalla sorgente.

La scomposizione può essere quindi utilizzata in associazione con la registrazione multicanale per minimizzare il rumore durante l'acquisizione.

La scelta dei parametri di elaborazione così come del miglior intervallo di frequenza per il calcolo della velocità di fase, può essere fatto con maggior accuratezza utilizzando dei sismogrammi multicanale.

Una volta scomposto il sismogramma, un'opportuna misura di coerenza applicata nel tempo e nel dominio della frequenza può essere utilizzata per calcolare la velocità di fase rispetto alla frequenza.

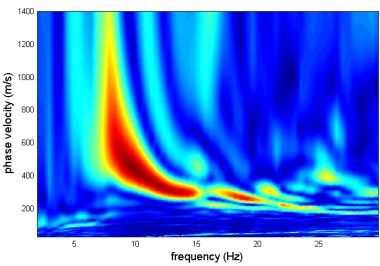


Figura 2.2: Curva dispersione

La velocità di fase e la frequenza sono le due variabili (x; y), il cui legame costituisce la curva di dispersione.

E' anche possibile determinare l'accuratezza del calcolo della curva di dispersione analizzando la pendenza lineare di ciascuna componente di frequenza delle onde superficiali in un singolo sismogramma.

In questo caso MASW permette la miglior registrazione e separazione ad ampia banda ed elevati rapporti S/N.

Un buon rapporto S/N assicura accuratezza nel calcolo della curva di dispersione, mentre l'ampiezza di banda migliora la risoluzione e la possibile profondità di indagine del profilo Vs di inversione.

Le onde di superficie sono facilmente generate da una sorgente sismica quale, ad esempio, una mazza battente.

In particolare l'analisi MASW è realizzata con tre diversi tipi di acquisizione:

- acquisizione ZVF ossia con energizzazione verticale e acquisizione con geofoni verticali per l'analisi MASW della componente verticale delle onde di Rayleigh;
- acquisizione THF ossia con energizzazione trasversale e acquisizione con geofoni orizzontali disposti con asse perpendicolare alla stesa per l'analisi MASW delle onde di Love.

2.4.1 Strumentazione e metodologia

La strumentazione impiegata per le indagini MASW è la seguente:

MASW ZVF:

- <u>Sismografo</u>: amplificatore sismico DMT COMPACT a 24 canali con 24 bit di precisione nella conversione A/D;
- Sorgente: mazza triggerata da 8 kg su piastra di duralluminio e/o maglio battente da 120 kg;
- Ricevitori: Geofoni ad asse verticale RTC 4.5 Hz 395 R.T. CLARK;
- Tempo di campionamento: 1 ms;
- Periodo di acquisizione: 1024 campioni, pari a 1 s.

MASW THE:

- <u>Sismografo</u>: amplificatore sismico DMT COMPACT a 24 canali con 24 bit di precisione nella conversione A/D;
- Sorgente: mazza triggerata da 8 kg su trave in PEAD con battuta di taglio;
- Ricevitori: Geofoni ad asse orizzontale SM-6/U-B 10 Hz SENSOR NEDERLAND b.v;
- Tempo di campionamento: 1 ms;
- Periodo di acquisizione: 1024 campioni, pari a 1 s.

Sono state effettuate 6 prospezioni sismiche MASW a 24 geofoni, come da schema seguente:

Figura 2-3: Schema acquisizioni prospezioni sismiche

La lunghezze totale, la distanza intergeofonica e la distanza dei punti di energizzazione rispetto al primo geofono per la prospezione sono riassunte nella seguente tabella:

Tabella 2-3: Riepilogo geometria prospezioni sismiche

INDAGINE [n°]	DISTANZA INTERGEOFONICA [m]	OFFSET BATTUTE ESTERNE E1 – E2 [m]	LUNGHEZZA STENDIMENTO [m]
11_MASW	2.5	12.5	57.5
23_MASW	4	20	92
35_MASW	4	20	92
40_MASW	5	25	115
47_MASW	4	20	92

2.5 Caratterizzazione sismica con microtremori - metodologia HVSR o Nakamura

La tecnica di acquisizione ed analisi dei rapporti spettrali o HVSR (Horizontal to Vertical Spectral Ratio) è totalmente non invasiva, molto rapida, si può applicare ovunque e non necessita di nessun tipo di perforazione, né di stendimenti di cavi, né di energizzazione esterne diverse dal rumore ambientale che in natura esiste ovunque.

Le conoscenze e le informazioni che si possono ottenere dall'analisi ed interpretazione di una registrazione di questo tipo sono:

- ove esistente, la <u>frequenza caratteristica di risonanza del sito</u> che rappresenta un parametro fondamentale per il corretto dimensionamento degli edifici in termini di risposta sismica locale ai fini dell'individuazione di adeguate precauzioni nell'edificare edifici aventi la stessa frequenza di vibrazione del terreno per evitare l'effetto di "doppia risonanza" estremamente pericolosi per la stabilità degli stessi;
- ove determinabile, la <u>frequenza fondamentale di risonanza di un edificio</u>, qualora la misura venga effettuata all'interno dello stesso, a seguito di analisi correlate sarà possibile confrontare le frequenze di sito e dell'edificio, e valutare se in caso di sisma la struttura potrà essere o meno a rischio;
- la <u>velocità media delle onde di taglio Vs</u> calcolata tramite uno specifico software di calcolo, per cui è <u>possibile determinare la Vs30</u> e la relativa categoria del suolo di fondazione come richiesto dalle N.T.C. 2018.
- la <u>stratigrafia del sottosuolo</u> con un ampio range di profondità di indagine, e secondo il principio che in termini di stratigrafia del sottosuolo, uno strato è inteso come unità distinta, in termini di contrasto d'impedenza sismica

Le basi teoriche della tecnica HVSR si rifanno in parte alla sismica tradizionale (riflessione, rifrazione, diffrazione) e in parte alla teoria dei microtremori.

La forma di un'onda registrata in un sito oggetto di indagine è funzione di:

- 1. dalla forma dell'onda prodotta dall'insieme delle sorgenti s dei microtremori,
- 2. dal percorso dell'onda dalle sorgenti s fino alla posizione x del sito oggetto di indagine e funzione dei processi di attenuazione, riflessione, rifrazione e canalizzazione di guida d'onda;
- 3. dalla modalità di acquisizione dello strumento in funzione dei parametri e delle caratteristiche strumentali.

Il rumore sismico ambientale, presente ovunque sulla superficie terrestre, è generato dai fenomeni atmosferici (onde oceaniche, vento) e dall'attività antropica oltre che, ovviamente, dall'attività dinamica terrestre.

Si chiama anche microtremore poiché riguarda oscillazioni con ampiezze minime, molto più piccole di quelle indotte dai terremoti.

I metodi che si basano sulla sua acquisizione si dicono passivi in quanto il segnale da acquisire non è generato con strumenti o tecniche attive, come ad esempio le esplosioni della sismica attiva.

Nel tragitto dalla sorgente *s* al sito *x* le onde elastiche (sia di origine sismica che dovute al microtremore) subiscono riflessioni, rifrazioni, canalizzazioni per fenomeni di guida d'onda ed attenuazioni che dipendono dalla natura del sottosuolo attraversato.

Questo significa che se da un lato l'informazione relativa alla sorgente viene persa e non sono più applicabili le tecniche della sismica classica, è presente comunque una parte di informazioni correlata al contenuto frequenziale del segnale che può essere estratta e che permette di ottenere informazioni relative al percorso del segnale ed in particolare relative alla struttura locale vicino al sensore.

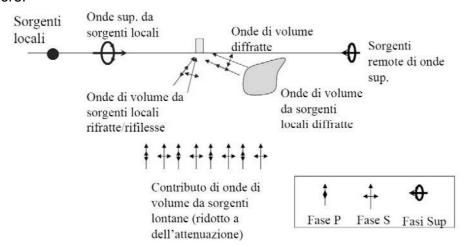


Figura 2.4: Modalità di generazione e propagazione microtremore

Dunque, anche il debole rumore sismico, che tradizionalmente costituisce la parte di segnale scartato dalla sismologia classica, contiene informazioni.

Questa informazione è però correlata alle caratteristiche frequenziale e spettrali del cosiddetto "rumore casuale" o microtremore, e può essere estratta attraverso tecniche opportune.

Una di queste tecniche è la tecnica di analisi dei rapporti spettrali o, semplicemente, HVSR che è in grado di fornire stime affidabili sul comportamento frequenziale dei sottosuoli, informazione di notevole importanza nell'ingegneria sismica.

2.5.1 Strumentazione e metodologia

Per l'acquisizione dei dati è stato utilizzato un tromometro digitale modello "*Tromino Engy Plus*" che rappresenta la nuova generazione di strumenti ultra-leggeri e ultra-compatti in alta risoluzione adatti a tali misurazioni.

Lo strumento racchiude al suo interno tre velocimetri elettrodinamici ortogonali tra loro ad alta definizione con intervallo di freguenza compreso tra 0.1 e 256 Hz.

I dati vengono memorizzati in una scheda di memoria interna da 4 GB, evitando così la

presenza di qualsiasi cavo che possa introdurre rumore meccanico ed elettronico.

Nella figura seguente si riporta la curva di rumore standard di un "Tromino" a confronto con i modelli standard di rumore sismico massimo (in verde) e minimo (in blu).

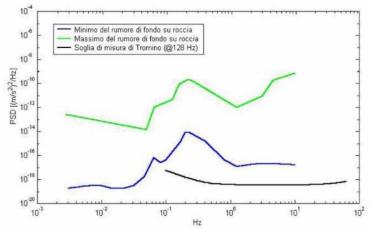


Figura 2.5: Confronto di intensità di rumori sismici sito specifici

Gli spettri di potenza sono espressi in termini di accelerazione e sono relativi alla componente verticale del moto. I dati sono stati convertiti in file ASCII mediante il software "Grilla", fornito a supporto dello strumento utilizzato, quindi elaborati per ottenere spettri di velocità in funzione della frequenza. Per evitare di introdurre basse frequenze spurie i dati sono stati corretti per offset e trend ma non filtrati così come raccomandato dalla norma DIN 4150-3.

In fase operativa si sono seguite le seguenti operazioni:

- 1. il rumore sismico è stato registrato nelle sue tre componenti per un intervallo di tempo dell'ordine delle decine di minuti (circa 40 minuti),
- 2. la registrazione è stata suddivisa in intervalli della durata di qualche decina di secondi ciascuno,
- 3. per ogni segmento viene eseguita un'analisi spettrale del segmento nelle sue tre componenti,
- 4. per ciascun segmento si calcolano i rapporti spettrali fra le componenti del moto sui piani orizzontale e verticale,
- 5. vengono calcolati i rapporti spettrali medi su tutti i segmenti.

Per considerare la misura ottenuta come una stima dell'ellitticità delle onde di Rayleigh è necessario che:

- 1. i rapporti H/V ottenuti sperimentalmente siano "stabili" ovvero frutto di un campionamento statistico adeguato,
- 2. gli effetti di sorgente siano stati effettivamente mediati ovvero non ci siano state sorgenti "dominanti",
- 3. la misura non contenga errori sistematici (per es. dovuti ad un cattivo accoppiamento dello strumento con il terreno).

2.5.2 Analisi microtremori e del rapporto HVSR – tecnica Nakamura

L'ottenimento di una stratigrafia sismica da indagini a stazione singola, deriva dai primi studi di Kanai (1957) in poi, per cui diversi metodi sono stati proposti per estrarre l'informazione relativa al sottosuolo dal rumore sismico registrato in un sito. Tra questi, la tecnica che si è maggiormente consolidata nell'uso è quella dei rapporti spettrali tra le componenti del moto orizzontale e quella verticale (Horizontal to Vertical Spectral Ratio, HVSR o H/V), proposta da Nogoshi e Igarashi (1970).

La tecnica è universalmente riconosciuta come efficace nel fornire stime affidabili della frequenza fondamentale di risonanza del sottosuolo.

Inizialmente, alcuni ricercatori, proposero di utilizzare anche l'ampiezza del picco come indicatore sintetico dell'amplificazione sismica locale, direttamente utilizzabile per la microzonazione.

Purtroppo, esiste abbondante letteratura comprovante il fatto che l'ampiezza del picco H/V, pur essendo legata all'entità del contrasto di impedenza tra strati, non è correlabile all'amplificazione sismica in modo semplice (cfr. Mucciarelli e Gallipoli, 2001; SESAME, 2005 e referenze ivi contenute).

Studi recenti hanno dimostrato che ulteriori picchi a frequenza maggiori di quelle del bedrock sono riconducibili a contrasti di impedenza interni alla copertura sedimentaria (es. Baumbach *et al.*, 2002) e picchi a frequenze minori di quella del bedrock sono invece riconducibili a contrasti di impedenza interni al bedrock stesso (es. Guillier *et al.*, 2005).

Riconosciuta questa capacità e dato che, se è disponibile una stima delle velocità delle onde elastiche, le frequenze di risonanza possono essere convertite in stratigrafia, ne risulta che il metodo HVSR può essere, in linea di principio, usato come strumento stratigrafico.

Le basi teoriche dell'H/V sono relativamente semplici in un mezzo del tipo strato + bedrock (o strato assimilabile al bedrock) in cui i parametri sono costanti in ciascuno strato (1-D).

Consideriamo il sistema della figura seguente in cui gli strati 1 e 2 si distinguono per le diverse densità (ρ 1 e ρ 2) e le diverse velocità delle onde sismiche (V1 e V2).

Un'onda che viaggia nel mezzo 1 viene (parzialmente) riflessa dall'interfaccia che separa i due strati.

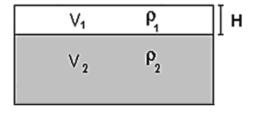


Figura 2.6: Schema di sottosuolo a 2 strati con differenti parametri geomeccanici

L'onda così riflessa interferisce con quelle incidenti, sommandosi e raggiungendo le ampiezze massime (condizione di risonanza) quando la lunghezza dell'onda incidente (l) è 4 volte

(o suoi multipli dispari) lo spessore *H* del primo strato.

La frequenza fondamentale di risonanza (f_r) dello strato 1 relativa alle onde S (o P) è pari a:

$$(f_r) = Vs1/4H$$
 $(f_r) = Vp1/4H$ [1

I microtremori sono solo in parte costituiti da onde di volume P o S, e in misura molto maggiore da onde superficiali, in particolare da onde di Rayleigh.

Tuttavia ci si può ricondurre a risonanza delle onde di volume, poiché le onde di superficie sono prodotte da interferenza costruttiva di queste ultime e poiché la velocità dell'onda di Rayleigh è molto prossima a quella delle onde S.

Questo effetto è sommabile, anche se non in modo lineare e senza una corrispondenza 1:1. Ciò significa che la curva H/V relativa ad un sistema a più strati contiene l'informazione relativa alle frequenze di risonanza (e quindi allo spessore) di ciascuno di essi, ma non è interpretabile semplicemente applicando l'equazione [1].

L'inversione richiede l'analisi delle singole componenti e del rapporto H/V, che fornisce un'importante normalizzazione del segnale per:

- a. il contenuto in frequenza,
- b. la risposta strumentale
- c. l'ampiezza del segnale quando le registrazioni vengono effettuate in momenti con rumore di fondo più o meno alto.

La situazione, nel caso di un suolo reale, è spesso più complessa, innanzitutto il modello di strato piano al di sopra del bedrock si applica molto raramente. Poi, la velocità aumenta con la profondità, e possono esserci eterogeneità laterali importanti ed infine la topografia può non essere piana.

L'inversione delle misure di tremore a fini stratigrafici, nei casi reali, sfrutta quindi la tecnica del confronto degli spettri singoli e dei rapporti H/V misurati con quelli 'sintetici', cioè con quelli calcolati relativamente al campo d'onde completo di un modello 3D.

L'interpretazione è tanto più soddisfacente, e il modello tanto più vicino alla realtà, quanto più i dati misurati e quelli sintetici sono vicini. In questo lavoro i segnali sono stati analizzati non solo attraverso i rapporti spettrali H/V ma anche attraverso gli spettri delle singole componenti, e nei casi più significativi, le curve HVSR sono state invertite secondo la procedura descritta da Arai e Tokimatsu (2004).

Per la determinazione delle velocità delle onde di taglio si utilizza un codice di calcolo appositamente creato per interpretare i rapporti spettrali (HVSR) basati sulla simulazione del campo di onde di superficie (Rayleigh e Love) in sistemi multistrato a strati piani e paralleli secondo la teoria descritta in AKI (1964) e Ben-Menahem e Singh (1981).

Il codice può elaborare modelli con qualsiasi numero di strati (limitati a 50 nella tabella d'input), in qualsiasi intervallo di frequenze e in un qualsiasi numero di modi (fondamentale e superiori).

Operativamente si costruisce un modello teorico HVSR avente tante discontinuità sismiche

quante sono le discontinuità evidenziate dalla registrazione eseguita. Successivamente, tramite uno specifico algoritmo, si cercherà di adattare la curva teorica a quella sperimentale; in questo modo si otterranno gli spessori dei sismostrati con la relativa velocità delle onde Vs.

Nei casi particolarmente semplici (copertura + bedrock o bedrock like) le profondità *h* delle discontinuità sismiche sono state ricavate tramite la formula seguente:

$$H = \left[\frac{V_0(1-a)}{4\hat{v}_1} + 1 \right]^{V(1-a)} - 1$$

in cui V_0 è la velocità al tetto dello strato, *a* un fattore che dipende dalle caratteristiche del sedimento (granulometria, coesione ecc.) e v la frequenza fondamentale di risonanza.

Nei casi più complessi (la maggioranza) si sono invertite le curve HVSR creando una serie di modelli teorici da confrontare con quello sperimentale, fino a considerare per buono il modello teorico più vicino alle curve sperimentali. In questo lavoro per l'inversione delle curve HVSR si sono seguite le procedure descritte in Arai e Tokimatsu (2004), usando il modo fondamentale delle onde di Rayleigh e Love

Le nuove Norme Tecniche per le Costruzioni del 14 gennaio 2018 hanno profondamente rinnovato le modalità di applicazione delle norme sismiche adottando, in modo omogeneo per tutto il paese, soluzione coerenti con il sistema di norme già definito a livello europeo (Eurocodice 8).

Per comprendere pienamente il significato della nuova normativa è necessario rifarsi al concetto di risposta sismica locale e, dal punto di vista strettamente fisico, per effetto di sito (risposta sismica locale) si intende l'insieme delle modifiche in ampiezza, durata e contenuto in frequenza che un moto sismico, relativo ad una formazione rocciosa di base (R), subisce attraversando gli strati di terreno sovrastanti fino alla superficie (S).

Nel presente lavoro si sfrutterà la teoria di Nakamura che pone in relazione lo spettro di risposta del substrato roccioso (rapporto spettrale H / V = 1) con quello effettivamente misurato in superficie.

3 Elaborazione dati e risultati

3.1 Elaborazione dei dati sismici con metodi a rifrazione

Per l'elaborazione dei dati sismici, è stato utilizzato il software Rayfract 3.35 2016, che consente di elaborare i dati secondo diverse tecniche.

Ottenuti i primi arrivi, le dromocrone ricavate dall'interpretatore vengono elaborate sulla base di tre distinte metodologie analitiche:

- CMP (Intercept Time Refraction, Rühl, 1995);
- Plus-Minus;
- Wavefront (M ALI AK, 2006).

Il metodo Wavefront rappresenta un'importante ottimizzazione del metodo GRM, in quanto invece di assumere come costante la distanza XY tra i vari ricevitori, il metodo Wavefront stima per ogni geofono la distanza ottimale rispetto agli altri, attraverso l'analisi dell'angolo d'emergenza del fronte d'onda sia diretto che inverso.

Tale caratteristica permette di analizzare, con ottimi risultati, anche rifrattori con superfici irregolari e di ottenere risultati con migliore definizione specialmente in contesti con assetti morfologici complessi, sia in superficie che nel sottosuolo.

I risultati ottenuti con il Wavefront, vengono comunque iterativamente correlati/comparati con quelli ottenuti con l'elaborazione CMP Intercept Time Refraction (Rühl, 1995).

Il CMP consente, infatti, di ricostruire la morfologia sepolta di più rifrattori sovrapposti anche in presenza di morfologie di superficie non piane, e con una buona precisione raggiungibile, specie se si dispone di dati pregressi per affinare la correlazione.

I dati così ottenuti vengono definitivamente elaborati mediante metodologia tomografica che permette una stima migliore delle velocità, risultando meno dipendente dalla spaziatura dei ricevitori e da assetti morfologici superficiali complessi.

Schematicamente l'elaborazione dei dati, eseguita con il programma RAYFRACT 3.35 2016 (Intelligent Resources), si sviluppa attraverso le seguenti fasi:

- 1. determinazione dei primi arrivi;
- 2. determinazione delle dromocrone con individuazione dei tratti correlabili con rifrattori superficiali, intermedi e profondi, con picking dei cosidetti punti di "branch"
- 3. determinazione di primo modello 1D delle velocità nel sottosuolo;
- 4. interpretazione iterativa e comparata secondo i seguenti metodi:
 - a. CMP Intercept Time Refraction (Rühl, 1995);
 - b. Plus-Minus;
 - c. Wavefront;
- 5. Determinazione del modello dei sismostrati ottimale:
- 6. output dei tabulati di cui:

- a. dati di scoppio, ascissa e quota dei geofoni e dei punti di energizzazione, tempi di primo arrivo;
- b. velocità e profondità calcolate per ciascun sismostrato individuato;
- 7. elaborazione grafica delle dromocrone sismiche;
- 8. elaborazione grafica della sezione sismostratigrafica
- 9. elaborazione grafica della tomografia sismica.

Si riporta di seguito la

Tabella 3-1, che riporta in forma schematica gli spessori medi e le velocità medie determinate per i vari sismostrati, relativamente alle onde P ed SH.

Tabella 3-1: Riepilogo spessori e velocità sismostrati onde P ed SH

STESA SISMICA	ONDE	SPESSORE SISMOSTRATO 1 [m]	VELOCITA' SISMOSTRATO 1 [m/s]	SPESSORE SISMOSTRATO 2 [m]	VELOCITA' SISMOSTRATO 2 [m/s]	SPESSORE SISMOSTRATO 3 [m]	VELOCITA' SISMOSTRATO 3 [m/s]
10_SR	Р	2	336 ÷ 373	3÷6	1119÷ 1183	ND	2540 ÷ 4452
10_SR	S	1	193 ÷ 213	4 ÷ 6	591÷ 593	ND	1096 ÷1621
22_SR	Р	4 ÷ 5	352÷ 375	4 ÷ 11	1632÷ 2161	ND	2755 ÷ 5032
22_SR	S	0 ÷ 3	153 ÷ 182	8 ÷ 14	482÷ 506	ND	1233 ÷ 2804
34_SR	Р	3 ÷ 4	546 ÷ 600	6 ÷ 11	1633÷ 1884	ND	2549÷3512
34_SR	S	3	265 ÷ 370	4÷ 7	725÷ 728	ND	902 ÷ 1020
39_SR	Р	4	606 ÷ 771	6 ÷ 8	1426÷ 1545	ND	2383÷2675
39_SR	S	2 ÷ 5	294 ÷ 317	8 ÷ 14	509÷ 694	ND	813 ÷ 966
46_SR	Р	3 ÷ 5	388 ÷ 443	7 ÷ 8	1069 ÷ 1733	ND	2421 ÷ 2882
46_SR	S	4	209 ÷ 231	10 ÷ 12	537÷ 549	ND	1342 ÷ 1433

ENKI s.r.l. - info@enki.it - Firenze

3.2 Elaborazione dei dati sismici con tecnica tomografica

Per l'inversione dei dati sismici acquisiti è stato utilizzato il software Rayfract ver. 3.35 2016, che è un software di tomografia sismica che impiega le soluzioni Eikonali per il calcolo dei tempi di percorso e per la modellazione della diffrazione, la rifrazione e la trasmissione delle onde sismiche.

Dopo il controllo visivo sulla qualità dei dati, si effettua un picking dei primi arrivi, in modo da ipotizzare un preliminare modello di velocità, che può essere migliorato attraverso successive iterazioni, in quanto la fase di calcolo si conclude quando si ha la migliore sovrapposizione fra i tempi di primo arrivo calcolati e quelli misurati.

Il processing dei dati, prosegue con la fase di inversione tomografica detta WET (Wavepath Eikonal Traveltime), che permette il calcolo delle traiettorie d'onda (wavepath) attraverso le soluzioni alle differenze finite dell'equazione che esprime le modalità di propagazione di un'onda in un mezzo isotropo.

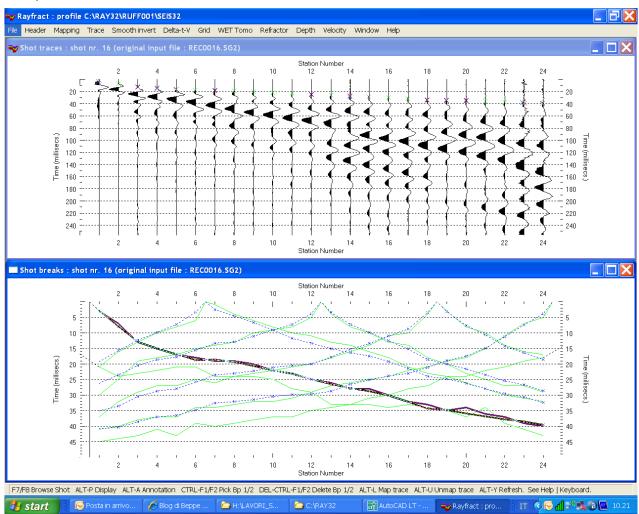


Figura 3-1: Confronto shot break primi arrivi e dromocrone

La tomografia WET modella i percorsi multipli della propagazione del segnale che contribuiscono ad un primo arrivo.

Il procedimento Eikonale, usato per il calcolo dei tempi di percorso, modella la diffrazione, la

rifrazione e la trasmissione delle onde sismiche.

Come conseguenza di ciò la capacità di fornire l'imaging di un'anomalia di velocità aumenta rispetto alla tomografia convenzionale del percorso di un raggio sismico.

I dati tomografici vengono quindi elaborati con un software di imaging, nel caso SURFER 9, che permette la visualizzazione secondo pseudosezioni verticali.

Relativamente ai risultati si rimanda agli allegati grafici che riportano in dettaglio le tomografie sismiche ottenute.

3.3 Elaborazione dei dati di sismica frequenziale – tecnica MASW

Come riportato al paragrafo 2.4, i dati sismici sono stati acquisiti per l'analisi frequenziale con tecnica MASW secondo le tecniche tradizionali di acquisizione:

- ZVF ossia con la sorgente di energizzazione ad impatto verticale e l'acquisizione della componente verticale delle onde di Rayleigh;
- THF ossia con la sorgente di energizzazione ad impatto orizzontale e l'acquisizione delle onde di Love.

I sismogrammi vengono elaborati secondo la trasformata di Fourier, che restituisce lo spettro del segnale. In questo dominio, detto dominio trasformato, si tenta di identificare il segnale relativo alle onde di Rayleigh e Love da altri tipi di segnale, come onde P, propagazione in aria, e disturbi antropici.

L'osservazione dello spettro consente di notare che le onde superficiali si propagano a velocità variabile a seconda della frequenza dell'onda stessa, questo fenomeno è detto dispersione, per cui sulla base della teoria sviluppata e degli algoritmi di calcolo, e dell'analisi correlata dei diversi spettri, si ipotizzano e si modellano le preliminari *curve di dispersione*, che associano ad ogni frequenza la velocità di propagazione dell'onda.

La determinazione della curva di dispersione (*picking*) è un processo particolarmente complesso che non può essere lasciato ad algoritmi automatici di calcolo dei software ma deve essere sempre attentamente valutato dall'interpretatore.

Determinate le curve di dispersione si ricerca un primo modello sintetico che verrà modificato iterativamente per n volte, in base alle differenze riscontrate tra le due curve, fino ad ottenerne uno a cui è associata una curva di dispersione sperimentale che ben approssima le curve di dispersione ricavate dai sismogrammi. Questa delicata seconda fase di interpretazione è comunemente detta fase di inversione.

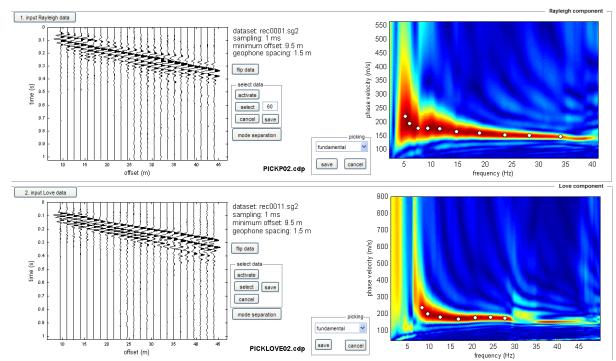


Figura 3.2: Picking della curva di dispersione congiunta (MASW ZVF+THF)

Le due fasi iterative di interpretazione, per quanto debbano seguire le linee guida dettate dalla teoria, devono rigorosamente essere controllate accuratamente dall'interpretatore poiché non è possibile affidarsi completamente ad un sistema automatico di inversione che lavora unicamente alla ricerca della soluzione matematicamente migliore, spesso non coincidente con la realtà fisica del sito.

I dati sono stati elaborati mediante il software commerciale "WinMASW 2018 Academy" prodotto dalla Eliosoft.

Il software presenterà come soluzione del processo d'inversione due modelli di Vs di cui:

- il modello "migliore" (in termini di minor misfit, cioè discrepanza tra curva osservata e calcolata);
- il modello medio calcolato secondo un'operazione statistica nota come MPPD (Dal Moro et al., 2007).

Come modello di Vs viene scelto modello medio, perché consigliato da bibliografia, anche se normalmente i due modelli non differiscono di molto.

3.4 Elaborazione dei dati microtremori – HVSR

Tutte le registrazioni di microtremori hanno avuto una durata di almeno 40 minuti, con lo strumento posizionato in posizione orizzontale, verificando la presenze di eventuali sorgenti puntuali di rumore antropico, e nel caso di giornate ventose, rimandando la misura a seguito di check

negativo per la presenza di forte rumore di fondo.

Dalle registrazioni del rumore sismico sono state ricavate e analizzate due serie di dati:

- 1. le curve HVSR, ottenute col software Grilla in dotazione a TROMINO®, secondo la procedura descritta in Castellaro et al. (2005), con parametri:
 - larghezza delle finestre d'analisi compresa fra 20 s e 60s in ragione dell'eventuale contesto di esecuzione delle misure e di potenziale rumore antropico;
 - lisciamento secondo finestra triangolare con ampiezza pari al 10% della frequenza centrale,
 - rimozione delle finestre con rapporto STA/LTA (media a breve termine / media a lungo termine) superiore ad 2;
 - rimozione manuale di eventuali transienti ancora presenti.
- 2. le curve dello spettro di velocità delle tre componenti del moto (ottenute dopo analisi con gli stessi parametri del punto 1.

Come riportato nelle schede di dettaglio in allegato, di ogni misura di microtremore è stata evidenziata l'affidabilità e l'eventuale presenza di picco secondo i criteri SESAME, ed è stata classificata secondo i criteri della "Proposta per una classificazione delle misure HVSR" (Albarello et al., 2010), si riporta di seguito la Tabella 3-14 di riepilogo dei risultati delle misure HVSR.

Tabella 3-2: Riepilogo risultati misure HVSR

ID		LOCALITA'	FREQUENZA PICCO (Hz)	AMPIEZZA	CLASSE
1	01_HVSR		12.81	4.66	A1
2	02_HVSR		LA MISURA NON PRESEN	TA PICCHI SIGNIFICATIVI	A2
3	03_HVSR		19.53	3.68	B1
4	04_HVSR		LA MISURA NON PRESEN	TA PICCHI SIGNIFICATIVI	A2
5	05_HVSR	CAPOLUOGO	LA MISURA NON PRESEN	TA PICCHI SIGNIFICATIVI	A2
6	06_HVSR		LA MISURA NON PRESEN	TA PICCHI SIGNIFICATIVI	A2
7	07_HVSR		LA MISURA NON PRESEN	TA PICCHI SIGNIFICATIVI	A2
8	08_HVSR		LA MISURA NON PRESEN	TA PICCHI SIGNIFICATIVI	A2
9	09_HVSR		LA MISURA NON PRESEN	TA PICCHI SIGNIFICATIVI	A2
10	12_HVSR		10.31	3.55	A1
11	13_HVSR	CIDONE ANGLIETTA	10.25	5.33	A1
12	14_HVSR	GIRONE - ANCHETTA	5.92	3.10	A1
13	15_HVSR		16.72	3.53	A1
14	16_HVSR		6.36	2.40	A2
15	17_HVSR		LA MISURA NON PRESEN	TA PICCHI SIGNIFICATIVI	A2
16	18_HVSR	0014010001 511504	17.19	4.57	A1
17	19_HVSR	COMPIOBBI - ELLERA	8.72	3.28	A1
18	20_HVSR		16.41	4.35	A2
19	21_HVSR		14.47	3.28	A1
20	24 HVSR		LA MISURA NON PRESEN	TA PICCHI SIGNIFICATIVI	A2
21	25 HVSR	MONTEBENI	LA MISURA NON PRESEN	TA PICCHI SIGNIFICATIVI	A2
22	27 HVSR	POGGIO GHERARDO	LA MISURA NON PRESEN	A2	
23	28 HVSR		LA MISURA NON PRESEN	A2	
24	29 HVSR	OLMO	LA MISURA NON PRESEN	A2	
25	30 HVSR		LA MISURA NON PRESEN	A2	
26	31 HVSR		LA MISURA NON PRESEN	A2	
27	32 HVSR	PIAN DI SAN BARTOLO	1.98	2.54	A2
28	33 HVSR		LA MISURA NON PRESEN	A2	
29	36 HVSR		LA MISURA NON PRESEN	TA PICCHI SIGNIFICATIVI	A2
30	37 HVSR	PIAN DI MUGNONE	LA MISURA NON PRESEN	TA PICCHI SIGNIFICATIVI	A2
31	38 HVSR		14.38	2.56	B2
32	41 HVSR		9.92	3.11	A1
33	42 HVSR			TA PICCHI SIGNIFICATIVI	A2
34	43 HVSR	CALDINE		TA PICCHI SIGNIFICATIVI	A2
35	44 HVSR			TA PICCHI SIGNIFICATIVI	A2
36	45_HVSR			TA PICCHI SIGNIFICATIVI	A2
37	48 HVSR		4.38	2.43	A2
38	49 HVSR	QUERCIOLA	6.95	2.92	A2
39	50_HVSR	<u> </u>	4.16	A1	
40	51 HVSR			3.08 TA PICCHI SIGNIFICATIVI	A2
41	52 HVSR	PONTE ALLA BADIA - SAN DOMENICO		TA PICCHI SIGNIFICATIVI	A2
42	53_HVSR		27.19	2.78	B2

4 Glossario

V _p	Velocità di propagazione delle onde di pressione
V _s	Velocità di propagazione delle onde di taglio
V _{s30}	Velocità di propagazione delle onde di taglio, media nei primi 30 m
V _{sv}	Componente verticale della velocità di propagazione delle onde di taglio
V _{sh}	Componente orizzontale della velocità di propagazione delle onde di taglio
Va	Velocità apparente di propagazione delle onde elastiche
V _r	Velocità reale di propagazione delle onde elastiche
t	·
f	
Н	Spessore dello strato
Ondo D	Ondo ciamiaho di procciono che cono la prima ad cocoro individuato in
Onde P	Onde sismiche di pressione che sono le prime ad essere individuate in
Ondo C	quanto le più veloci;
	Onde sismiche di taglio
Battuta 51	Prima battuta contro piastra per generazione onde S, con direzione ad esempio E-W;
Battuta S2	Seconda battuta contro piastra, con direzione coniugata rispetto ad S1, ad
	esempio W-E, per determinazione di first break delle onde S
FIRST BREAK	processo di interpretazione dei dati sismici per determinazione del primo
	arrivo delle onde sismiche, sia di tipo P che S;
ESAC	Extended Spatial AutoCorrelation
MASW	Multi-Channel Analysis Surface Waves
HVSR	Horizontal to Vertical Spectral Ratio – Metodo Nakamura rapporto spettrale
	tra le componenti del orizzontale e verticale dei microtremori
Inversione	Processo di fit per l'ottenimento di un modello sperimentale a partire da dati
	osservati, mediante il confronto iterativo delle differenze tra due serie di dati,
	definiti da un modello sperimentale (invertito) e da un modello diretto
	(sintetico).
MS	Microzonazione Sismica
MOPS	Microzone Omogenee in Prospettiva Sismica

5 Riferimenti normativi e bibliografici

5.1 Riferimenti normativi e specifiche tecniche

- [1] Decreto Ministeriale Infrastrutture 17 gennaio 2018 "Nuove Norme Tecniche per le Costruzioni", e indicato anche con N.T.C. nel presente documento.
- [2] Indirizzi e Criteri di microzonazione Sismica del Dipartimento della Protezione Civile Nazionale (ICMS) approvati il 13 novembre 2008 dalla conferenza delle Regioni e delle Province autonome;
- [3] Specifiche tecniche regionali: Allegato A alla DGRT n.261/2011, Appendice 1, Appendice 2
- [4] Istruzioni Tecniche per le indagini geologico-tecniche, geofisiche e geotecniche, statiche e dinamiche, finalizzate alla valutazione degli effetti locali nei comuni classificati sismici della Toscana Programma VEL Toscana Del. GRT. n. 1343 del 18 dicembre 2000 e s.m.e.i.

5.2 Riferimenti bibliografici

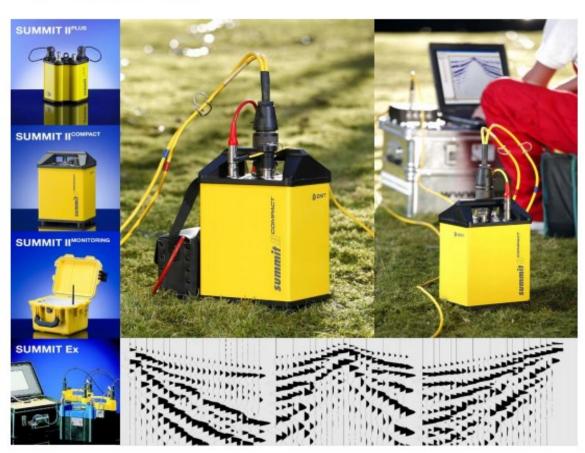
- [5] Dal Moro G., 2008a, VS and VP Vertical Profiling and Poisson Ratio Estimation via Joint Inversion of Rayleigh Waves and Refraction Travel Times by means of Bi-Objective Evolutionary Algorithm, J. Appl. Geophysics (in stampa)
- [6] Dal Moro G., Pipan M., Forte E., Finetti I., 2003, Determination of Rayleigh wave dispersion curves for near surface applications in unconsolidated sediments, Proceedings SEG, 73st Annual Int. Mtg. (Dallas, Texas, Oct 2003)
- [7] Xia J., Miller R.D. and Park C.B.; 1999: Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics. 64, 691-700.
- [8] Xia J., Miller R.D., Park C.B., Ivanov J., Tian G. and Chen C.; 2004: Utilization of high-frequency Rayleigh waves in near-surface geophysics. The Leading Edge, 23, 753-759.
- [9] Xia J., Miller R.D., Park C.B. and Tian G.; 2002: Determining Q of near-surface materials from Rayleigh waves. J. Appl. Geophys., 51, 121–129.
- [10] Xia J., Miller R.D., Park C.B. and Tian G.; 2003: Inversion of high frequency surface waves with fundamental and higher modes. Jour. of Appl. Geophys., 52, 45–57.
- [11] Rix, G.J. and Lai, C.G.Model-Based Uncertainty in Surface Wave InversionProceedings, GeoCongress 2006, "Geotechnical Engineering in the Information Technology Age", Atlanta, February 26-March 1, 2006. Paper Reference No. 11904.
- [12] Lai C.G., Wilmanski K. (Editors) Surface Waves in Geomechanics: Direct and Inverse Modeling for Soils and Rocks, CISM Lecture Notes No. 481, CISM-Springer Verlag, pp. 385, ISBN: 3-211-27740-4. CD with software programs for surface wave analysis is included.
- [13] Lai, C.G. "Chapter 3 Surface Waves in Dissipative Media: Forward and Inverse Modelling" in Surface Waves in Geomechanics: Direct and Inverse Modeling for Soils and Rocks. Edited

- by C.G. Lai and K. Wilmanski, CISM Lecture Notes Vol. No. 481, Springer-Verlag, pp. 385, October 2005. ISBN: 3-211-27740-4. CD with software programs for surface wave analysis is included.
- [14] Rix, G.J. "Chapter 3 Near-Surface Site Characterization Using Surface Waves" in Surface Waves in Geomechanics: Direct and Inverse Modeling for Soils and Rocks. Edited by C.G. Lai and K. Wilmanski, CISM Lecture Notes Vol. No. 481, Springer-Verlag, pp. 385, October 2005.
- [15] Lai, C.G., Foti, S., Rix, G.J. Propagation of Data Uncertainty in Surface Wave InversionJournal of Environmental and Engineering Geophysics, 10(2), pp. 219-228, July 2005.
- [16] Lai, C.G., Rix, G.J., Foti, S., Roma, V. Simultaneous Measurement and Inversion of Surface Wave Dispersion and Attenuation Curves Soil Dynamics and Earthquake Engineering, Vol. 22, No. 9-12, pp. 923-930, October-December 2002.
- [17] Rix, G.J., Lai, C.G., Spang, A.W. In Situ Measurements of Damping Ratio Using Surface Waves Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No.5, pp. 472-480, May 2000.
- [18] Lai, C.G., Foti, S., Godio, A., Rix, G.J., Sambuelli, L., Socco, V. Geotechnical Site Characterization Using Geophysical Techniques Italian Geotechnical Journal, RIG, Special Publication, No.3, pp. 99-118, September 2000.
- [19] Lai, C.G. Spectral Analysis of Surface Waves Active Methods Technical Recommendations Italian Geotechnical Journal, RIG, No.4, pp. 201-212. December 2000.
- [20] Lai, C.G., Rix, G.J. Inversion of Multi-Mode Effective Dispersion Curves Proceedings, 2nd International Symposium on Pre-Failure Deformation Characteristics of Geomaterials, IS Torino 99, Torino, Italy, September 26-29, 1999, Vol. I, pp. 411-418.
- [21] Lai, C.G., Rix, G.J. Simultaneous Inversion of Rayleigh Phase Velocity and Attenuation for Near- Surface Site Characterization Contract Report prepared for the National Science Foundation under Grant No. CMS-9402358, and the U.S. Geological Survey, Department of Interior, Report No. GIT-CEE/GEO-98-2, July, 1998, pp. 258.
- [22] Strobbia, C. Surface wave methods: acquisition, processing and inversion, Ph.D. Thesis, Politecnico di Torino, Italy, 2003.
- [23] Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremors on the ground surface. Quarterly Report of Railway Technical Research Institute. 30-1, pp 25-33.
- [24] Ibs-von Seht, M. y Wohlenberg, J. (1999). Microtremor measurements used to map thickness of soft sediments. Bulletin of Seismological Society of America, Vol 89, pp 250-259.
- [25] Rohdewald, S., Burton, B., Sheehan, J., Doll, W., 2010, Processing of seismic refraction tomography data, SAGEEP short course notes, Keystone, Colorado.
- [26] Schuster, G.T., Quintus-Bosz, A., 1993, Wavepath eikonal traveltime inversion: Theory. Geophysics, Volume 58, 1314-1323.
- [27] Sheehan, J.R., Doll, W.E., Mandell, W., 2005, An evaluation of methods and available software

- for seismic refraction tomography analysis, JEEG, Volume 10(1), 21-34.
- [28] Watanabe, T., Matsuoka, T., Ashida, Y., 1999, Seismic traveltime tomography using Fresnel volume approach, SEG Houston 1999 Meeting, Expanded Abstracts.
- [29] White, D.J., 1989, Two-dimensional seismic refraction tomography, Geophysical Journal, Volume 97, 223-245.
- [30] Zelt, 2010, SAGEEP 2011 Seismic refraction shootout: blind test of methods for obtaining velocitymodels from first-arrival travel times.
- [31] Semih, S. Tezcan, Ali, Keceli, Zuhal Ozdemir, 2006, Allowable bearing capacity of shallow foundations based on shear wave velocity, Geotechnical and Geological Engineering (2006) 24: 203–218
- [32] Terzaghi, K. and Peck, R. B. (1967) Soil Mechanics in Engineering Practice, 2nd edn, John Wiley and Sons, New York.
- [33] Turesson, A (2007), A comparison of methods for the analysis of compressional, shear, and surface wave seismic data, and determination of the shear modulus, Journal of Applied Geophysics, 61, Elsevier
- [34] Orlando, L. Pelliccioni, G., (2010), P and PS data to reduce the uncertainty in the reconstruction of near-surface alluvial deposits, Journal of Applied Geophysics, 42, Elsevier
- [35] Aki K. (1957), Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bullettin of the Earthquake Research Institute 35:415-456
- [36] Dal Moro G. et al., (2007), Rayleigh Wave Dispersion Curve Inversion via genetic algorithms and posterior probability density evaluation, J.Appl.Geophysics, 61, 39-55
- [37] M. Ali Ak (2006), An Analytical Raypath approach to the Refraction Wavefront Method, Geophysical Prospecting, 38, 971-982

COMUNE DI FIESOLE	RELAZIONE TECNICA INTERPRETATIVA
	SULLE INDAGINI GEOFISICHE PER LA
	MICROZONAZIONE SISMICA DI LIVELLO 1

ALLEGATO TECNICO 1 - SPECIFICHE TECNICHE STRUMENTI, SENSORI, SOFTWARE DI ACQUISIZIONE ED ANALISI


Summit II Compact

The Seismic 'Productivity System'!

The Summit II Compact is the most productive and robust seismic acquisition system for LVL measurements, borehole tomography, and VSP surveys: The twenty-four channel box in a solid metal casing with the Summit 'Plug & Trace' technology can be used in any environment for high speed production. The seismograph works as a stand alone system or several boxes can be linked together with the 'Snap-on' line cable to comprise a multichannel seismic acquisition system.

Specialised for LVL and Engineering Seismics!

- Highest productivity due to its sophisticated system design
- For specialist applications such as LVL and engineering surveys
- Extremely robust, lightweight metal casing
- Supreme service via rapid reaction support hotline

Allegato 1. 1: Sismografo Summit

80	
9	
×	
8	
B	
ŝ	
ĕ	
90	
Σ	
0	
-	
₹	
Ε	
5	
õ	
Ξ	
ø	
5.	
O.	
8	
ō	

Technical Spec	ifications				
Sample Interval	1/48, 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8 ms	Analogue Anti-Alias Filter	7.2 kHz 6 dB/octave		
Record Length	0.5 K samples,, 120 K samples	Analogue Low-Cut Filter	1 Hz 6 dB/octave		
Preamp Gain	0 dB, 20 dB or 40 dB	Digital Anti-Alias	0.8 x Nyquist		
A/D Converter	24 bit delta sigma technology	Rejection at Nyquist	-120 dB		
Maximum Input	2.0 Volt RMS	Frequencies	-120 05		
Signal	5.6 Volt peak to peak	Passband Ripple	+/- 0.05 dB		
Input Impedance	20 kOhm	Built-In Test	- Sine wave		
Instantaneous Dynamic Range	≥ 120 dB @ 2 ms sampling interval	Functions	- Pulse - Instrument noise - Geophone step - Sweep transfer - Auto correlation - Cross corelation		
Equivalent Input Noise	Less than 0.3 μV RMS @ 2 ms sampling interval and 40 dB preamp gain				
Crosstalk	≥ 112 dB (between channels)	System Check	- Battery status		
Total Harmonic Distortion	≤ 0.0008 %		Equivalent input noise Total harmonic distortion Instantaneous dynamic range		
Common Mode Rejection Ratio	≥ 100 dB		Common mode rejection Cross talk Time accuracy		
Gain Accuracy	Typical 1 % (between all channels)	Geophone Check	- Impedance - Damping		
Time Accuracy	Typical 5 ppm (between all channels)		Natural frequency Noise Leakage		
Power Supply	+ 9 - 18 VDC @ 0.2 W / channel	Subject to technical change			
Dimensions	20.0 x 15.0 x 29.0 cm				
Weight	4.9 kg				

Environmental Specifications								
Operation Temperature	-30°C to + 70°C							
Humidity Range	0 – 95 %							
Case	Solid waterproof metal housing deployable in any surface environment							

DMT GmbH & Co. KG Exploration & Geosurvey

Am Technologiepark 1 45307 Essen, Germany

Phone +49 201-172-1970
Fax +49 201-172-1971
info.summit@dmt.de
www.summit-system.de

Member of TÜV NORD Group

DIN EN ISO 9001 certified

Overall System Performance and Flexibility

Typical Shot Cycling Time

- 10 seconds @ 1 ms sampling rate
- 2 K trace length with 256 channels inclusive data storage; reduced by using multiple USB

Mobile System Control

- via easy to handle standard PC / Laptop

Cables

 Simple low cost two-conductor wire for Snap-on technology or alternatively configured four wire round cable

Connectors

- 55 pin plug input connector
- Snap-on connector or four-wired round cable
- USB 2.0

Allegato 1. 2: Specifiche tecniche Sismografo Summit

HORIZONTAL Geophones SM-6/U-B 10 Hz - SENSOR NEDERLAND b.v.

Specifications				INPUT/OUTPUT, II
	SM-6/U-B			
Frequency				
Natural frequency (f _n)	8 Hz	10 Hz	14 Hz	
Tolerance	±0.5 Hz	±5%	±5%	
Maximum tilt angle for specified f _n	20°	25°	25°	
Typical spurious frequency	150 Hz	170 Hz	190 Hz	
Distortion				
Distortion with 0.7 in/s p.p coil-to-				
case velocity	<0.2%	<0.2%	<0.2%	
Distortion measurement frequency	12 Hz	12 Hz	14 Hz	
Maximum tilt angle for distortion				
specification	15°	20°	20°	
oposition:		20	20	
Damping	0.045	0.05	0.40	
Open-circuit damping	0.315	0.25	0.18	
Damping calibration-shunt resistance	2,257 Ω	1,339 Ω	645 Ω	
Damping with shunt	0.6	0.6	0.6	
Tolerance with shunt	±5%	±5%	±5%	
Resistance				
Standard coil resistance	375 Ω	375 Ω	375 Ω	
Tolerance	±5%	±5%	±5%	
Sensitivity				
Open-circuit sensitivity	28.8 V/m/s	28.8 V/m/s	28.8 V/m/s	(0.73 V/in/s)
Tolerance	±5%	±5%	±5%	,
$R_tB_cf_a$	6,000 ΩHz	6,000 ΩHz	6,000 ΩHz	
Moving mass	11.1 g	11.1 g	11.1 g	(0.39 oz)
Maximum coil excursion p.p.	4 mm	4 mm	4 mm	(0.16 in)
Physical Characteristics				
Diameter	25.4 mm	25.4 mm	25.4 mm	(1 in)
Height	36 mm	36 mm	36 mm	(1.42 in)
Weight	81 a	81 g	81 g	(2.85 oz)
Operating temperature range	-40°C to +100°C			(-40°F to +212°F)
Limited Warranty Period*	2 years	2 years	2 years	
- Transary Forton	,		,	cal damage to the element case
	All parameters are s	pecified at +20 °C in th	e vertical position unle	ess otherwise stated.

Allegato 1. 3: Specifiche tecniche geofoni orizzontali 10 Hz – SENSOR NEDERLAND

VERTICAL Geophones GEOSPACE GS-20DX 14 Hz

Specifications (All parameters are specified a4 temperature of 22c)

- FREQUENCY:
- Natural Frequency (fn):14Hz
- Tolerance: +/- 5%
- Max. tilt angle for specified fn: 10 degrees
- Typical spurious frequency: > 250Hz
- DISTORTION:
- Distortion: <= 0.22 +/- 10 %
- Distortion measurement frequency: 14Hz
- Max tilt angle for distortion specification: Vertical
- COIL RESISTANCE:
- Standard: 395ohm
- Tolerance: +/- 5%
- SENSITIVITY:
- Sensitivity: 0.28 V/m/s (0.698 V/in/s)
- Tolerance: +/- 7.5%
- Moving Mass: 11.2 g (0.395 oz)
- Maximum coil excursion p.p.: 1.52 mm (0.060 in)
- PHYSICAL CHARACTERISTICS:
- Diameter: 25.4 mm (1 in)
- Height: 33.0 mm (1.26 in)
- Weight: 86 g (3.03 oz)
- Operating temperature range: -45 Celcius to +100 Celcius

Allegato 1. 4: Specifiche tecniche geofoni verticali 14 Hz – GEOSPACE

VERTICAL Geophones RTC 4.5 Hz 395 – R.T. CLARK companies

Specifications (All parameters are specified a4 temperature of 22c)

- FREQUENCY:
- Natural Frequency (fn): 4.5Hz
- Tolerance: +/- 0.5Hz
- Max. tilt angle for specified fn: 10 degrees
- Typical spurious frequency: > 160Hz
- DISTORTION:
- Distortion: <= 0.2%
- Distortion measurement frequency: 12Hz
- Max tilt angle for distortion specification: Vertical
- COIL RESISTANCE:
- Standard: 395ohm
- Tolerance: +/- 5%
- SENSITIVITY:
- Sensitivity: 22.0 V/m/s (0.698 V/in/s)
- Tolerance: +/- 7.5%
- Moving Mass: 11.2 g (0.395 oz)
- Maximum coil excursion p.p.: 1.52 mm (0.060 in)
- PHYSICAL CHARACTERISTICS:
- Diameter: 25.4 mm (1 in)
- Height: 33.0 mm (1.26 in)
- Weight: 86 g (3.03 oz)
- Operating temperature range: -45 Celcius to +100 Celcius

Allegato 1. 5: Specifiche tecniche geofoni verticali 4.5 Hz – RTC CLARK

TROMINO°

La nuova generazione di sistemi per sismica a stazione singola e analisi vibrazionali

TROMINO[®] è il primo strumento realmente 'tutto in uno' per la registrazione sismica a stazione singola passiva ed attiva e per il monitoraggio delle vibrazioni.

TROMINO® è dotato di*:

- 3 canali velocimetrici per l'acquisizione del microtremore sismico ambientale (fino a ±1.5 mm/s ~)
- 3 canali velocimetrici per la registrazione di vibrazioni forti (fino a ±5 cm/s ~)
- 3 canali accelerometrici per monitoraggio di vibrazioni
- 1 canale analogico (es. trigger esterno per MASW/rifrazione)
- ricevitore GPS integrato, antenna interna e/o esterna per localizzazione e/o sincronizzazione tra diverse unità
- modulo radio per sincronizzazione tra diverse unità e trasmissione di allarmi (es. superamento di soglie)

TROMINO "è la soluzione ideale negli ambiti

GEOLOGICO-TECNICO

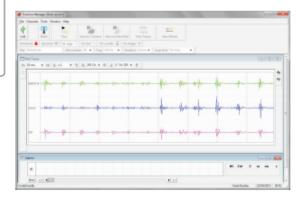
- misura delle frequenze di risonanza dei suoli
- effetti di sito e microzonazione sismica (curve H/V, metodo di Nakamura)
- stratigrafia sismica passiva
- Vs30 da fit vincolato della curva H/V
- doppia risonanza suolo-struttura
- array sismici attivi o passivi tramite sincronizzazione di più unità via radio o GPS
- sismica a rifrazione a piccola-media scala per onde P e S, MASW, FTAN (TROMINO® + trigger)

INGEGNERISTICO

- misura dei modi di vibrazione delle strutture
- monitoraggio delle vibrazioni
- acquisizione sincronizzata da più unità via radio o GPS
- " trasmissione di allarmi (superamento soglie)

Tromino Manager è il software per la gestione remota (via web) e via cavo di TROMINO*. Tromino Manager permette il salvataggio e la visualizzazione continua dei dati acquisiti in remoto, la segnalazione di allarmi (per superamenti di soglie) in diretta e via e-mail. Tromino Manager può segnalare allarmi anche relativi a reti di TROMINO* comunicanti via radio con un TROMINO* master.

TROMINO® opera nell'intervallo di frequenze 0.1 - 1024 Hz su tutti canali (fino a 32 kHz su 2 canali*) con conversione A/D > 24 bit equivalenti a 128 Hz.

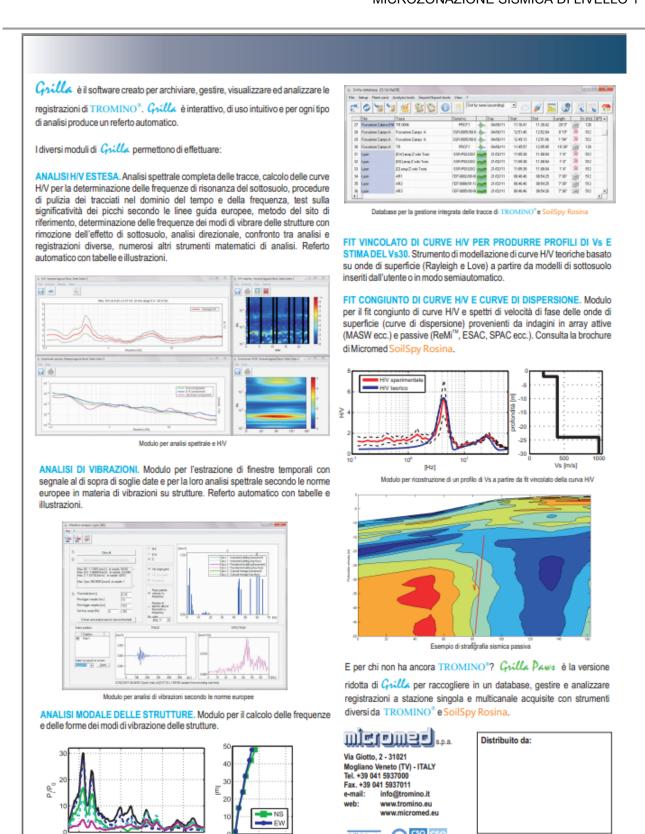

Il tutto in un unico strumento realmente portatile:

- nessun cavo esterno
- dimensioni minime (10 x 14 x 8 cm)
- peso minimo (~1 kg)

a bassissimo consumo (75 mW*):

- 2 batterie AA(1.5 V) garantiscono fino a oltre 100 h di registrazione in continua
- può essere alimentato da rete elettrica per monitoraggi prolungati

TROMINO® è un brevetto internazionale



www.tromino.eu

Allegato 1. 6: Tromino Microtremori

^{*} specifiche variabili a seconda dei modelli

Allegato 1. 7: Tromino Microtremori

www.tromino.eu

mieramea

TRO.IT-4.00

Rayfract® Seismic Refraction/Borehole Tomography software Intelligent Resources Inc. Subsurface velocity structure imaging for geotechnical engineering and exploration

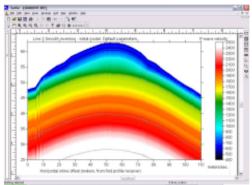
Rayfract® software allows reliable imaging of subsurface velocity with modeling of propagation of seismic first break energy. Import the seismic data and define the 2D profile geometry. Pick or import first breaks. Run our Smooth inversion method to objectively image velocity structure, even with extreme topography and strong lateral velocity variation. No assignment of traces to refractors required.

The initial 1D-gradient model is determined automatically from the travel time data, with our DeltatV (improved Wiechert-Herglotz) method. This method gives a good initial fit between modeled and picked times, even with velocity inversions.

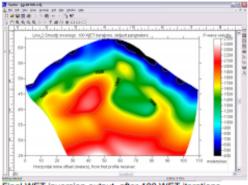
The initial model is refined with WET Wavepath Eikonal Traveltime tomographic inversion, aka Fresnel Volume Tomography. While conventional ray tracing is limited to modeling just one ray per first break, WET models multiple signal propagation paths contributing to one first break. Our Eikonal solver used for traveltime field computation explicitly models diffraction besides refraction and transmission of seismic waves.

Rayfract® supports any surface-based 2D recording geometry, including roll-along seismic reflection lines. Add uphole refraction shots to constrain the WET tomography solution. Allows crosshole and multi-offset VSP survey interpretation.

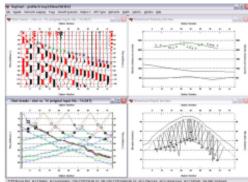
Use our conventional Wavefront and Plus-Minus methods to obtain alternative interpretations, in case of true layering of the subsurface geology. Assign traces to refractors interactively or automatically.

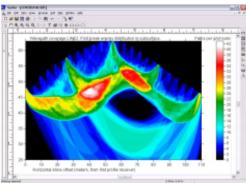

Specifications

- Requires Golden Software Surfer® 8, 9 or 10 for automatic plotting and interactive editing of tomography output
- Runs under Microsoft Windows® 2000, XP, Vista and Windows® 7 both 32 and 64-bit
- Max. 360 traces per shot, 500 shots per profile
- Define your own irregular receiver spread types
- Geometrics, ABEM, BISON, DMT SUMMIT, OYO, SEISMIC SOURCE COMPANY, SEISTRONIX SEG-2 data import
- Import ASCII, Interpex GREMIX, OYO SEISREFA, Rimrock PIK, EarthFX VIEWSEIS, W_GeoSoft WINSISM, OPTIM LLC SEISOPT, Geometrics SEISIMAGER, Tweeton GeoTomCG files with first break times and geometry
- Use overlapping receiver spreads to simulate one long spread. Use offset shots for depth penetration
- Build own model with Surfer®. Synthesize traveltime data by forward modeling propagation with Rayfract®
- Interpret P-wave and S-wave data for same line, and map dynamic Poisson's ratio with Surfer® Grid Math
- Interpret downhole VSP and crosshole surveys
- Min. / max. sample rate of 1 microsecond / 1 second
- Max. 20,000 samples per trace
- Handle Surfer® grid files with up to 640,000 nodes, up to 1,280,000 nodes with Pro Annual Subscription license
- Flexible trace display and frequency filtering
- Automatic & interactive first break picking
- Automatic, interactive assignment of traces to refractors
- Import/export picks & geometry from/to ASCII files
- Uses multiple CPU cores, for fast back-projection of residuals along Fresnel volumes, with SIRT algorithm
- Pro Annual Subscription license for long lines recorded with marine/land streamer. Uses all installed RAM, up to 64 GB.


Copyright © 1996–2012 Intelligent Resources Inc. All rights reserved. Contact us at

Intelligent Resources Inc. 142 - 757 West Hastings Street Vancouver B.C. V6C 1A1, Canada


Phone 1 604 782-9845 Fax 1 604 408-8678 E-mail sales@rayfract.com Web http://rayfract.com


1D-gradient initial model : horizontally averaged DeltatV

Final WET inversion output, after 100 WET iterations

Conventional Wavefront interpretation. Note diving waves.

WET subsurface coverage with first break energy

Allegato 1. 8: Software Rayfract ver. 3.24 per tomografia sismica

SWAN (Surface waves analysis)

Potente software per l'elaborazione di dati sismici perfetto anche per la valutazione della Vs30

SMAN è il software per analisi ed interpretazione di dati di natura sismica.

MASW a SASW (Multi-Channel Analysis of Surface Waves - Spectral Analysis of Surface Waves)

REM (REfraction Microtremors)

La metodologia MASW e SASW permette una detagliata ricostruzione della distribuzione delle velocità di propagazione delle onde superficiali (S e P) nei primi metri del sottosuolo; mentre, la tecnica REM, permette, a scapito di una minore accuratezza nei primi metri, di raggiungere profondità maggiori. Entrambe le metodologie di indagine sono molto convenienti sia sul lato economico sia sul tempo richiesto per effettuare le misure e le analiali.

SWAN si presta a diversi livelli di utilizzo, senza per questo compromettere la qualità dei risultati ottenuti. E' un potente atrumento sia per chi e' interessato ad approtondire le concacarze in materia sismica, afruttando l'utilità dei vari atrumenti messi a disposizione; sia per il professionista che si vuole limitare ad una semplice e veloce interpretazione dei dati di campagna maccoli.

Principali caratteristiche del software sono:

Manaliai di sezioni bidimensionali del terreno su dati raccolti mediante acquisizioni multiple, ottenute tramite la traslazione dell'amay dei riceytori.

Minterfaccia grafica studiata per rendere semplice l'uso degli strumenti disponibili, come:

- M'impostazione del parametri che definiscono il modello sintetico per l'inversione del modello del terreno in modalità intensitiva.
- Picking dello spettro per l'estrazione della curve di dispersione.
- Editing della curva di dispersione sperimentale
- Malgoritmi di calcolo completi, veloci ed efficienti:
- Escalcolo apettro FK, FV, FX.
- Imolteplici finestre di windowing (boxcar, hamming, hanning, blackman,...).
- Eparametrizzazione del modello sintetico del temeno fino a 30 strati.
 - Escontrollo dei principali parametri dell'inversione (numero massimo delle iterazioni, tolleranza sui parametri, quantificazione dei disturbo).
 - Esportazione delle immagini nei più comuni formati grafici.
 - Editing della curva di dispersione sperimentale.

L'elaborazione dei dati di campagna si compone delle seguenti fasi:

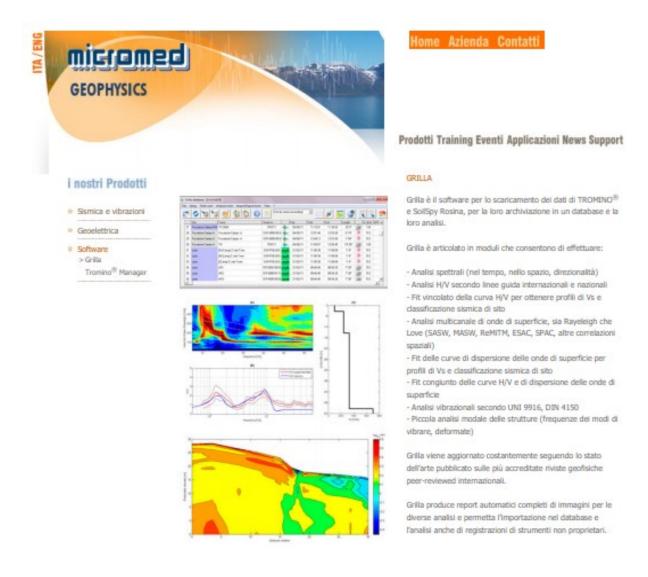
Pre-processing, per.

- 88ºulizia da fenomeni di disturbo sul segnale utile, dovuto a sorgenti ambientali non controllabili.
- Pasemblaggio di array virtuali, per ovviare alla limitazione del numero di geofoni diaponibili in campagna.
- Mantisi apettrale, mediante FFT, del sismogramma otienuto, condotta mediante l'utilizzo di vari parametri matematici, che consentono di adattarsi alle esigenze dell'utente.
- Estrazione (manuale od automatica) della curva di dispersione sperimentale, e sua visualizzazione nei dominio della frequenza o della lunghezza d'onda.
- ☐Generazione di una curva di dispersione, basata su modello sintetico del terreno, mediante la caratterizzazione, per diascuno strato, dello spessore dello strato stesso, della velocità delle onde S, della velocità delle onde P, della densità del terreno.
- Minversione del modello sintetico in modelità interattiva o automatica

(inversione basata sulle velocità delle onde S o sugli spessori degli strati).

A seguito della interpretazione eseguita viene fornito anche il valore della Va30 del sito, consentendone la classificazione secondo le normative tecniche, attualmente in corso, in materia di progettazione antistamica.

Allegato 1. 9: Software Swan per tecnica MASW e REMI


Software per la determinazione di spettri di velocità di fase (MASW, ReMi, ESAC e FK) e gruppo (MFA), la modellazione e l'inversione (anche multimodale) delle curve di dispersione delle onde di Rayleigh e Love (anche congiuntamente), l'analisi delle curve di attenuazione delle onde di Rayleigh per la stima dei fattori di qualità Q, la stima del periodo proprio di sito da equazione della risonanza e determinazione e modellazione del rapporto spettrale H/V.

Il software winMASW consente di analizzare dati sismici per ricavare il profilo verticale della V_S (velocità delle onde di taglio) secondo i seguenti metodi:

- Analisi MASW (onde di Rayleigh & Love, anche congiuntamente)
- Analisi ReMi
- Analisi ESAC e FK
- HVSR (Horizontal-to-Vertical Spectral Ratio) (si raccomanda la loro analisi congiuntamente ad analisi di dispersione)
- Modellazione 1D tempi onde rifratte
- Interfaccia grafica per la suite del Prof. Herrmann per la generazione di sismogrammi sintetici e conseguentemente: inversione degli spettri di velocità full waveform senza necessità di picking o interpretazione dei modi
- Analisi attenuazione onde di Rayleigh per stima fattori di qualità Q_S
- Interfaccia grafica per la generazione di sismogrammi sintetici (open-source codes del Prof. Herrmann)

Allegato 1. 10: Software WinMASW Academy 6.0 per tecnica MASW-REMI-ESAC e fattore di qualità

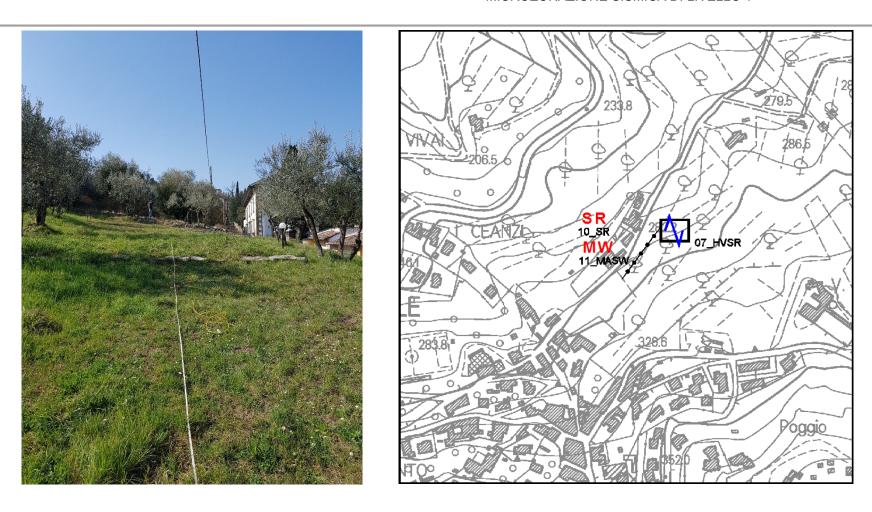
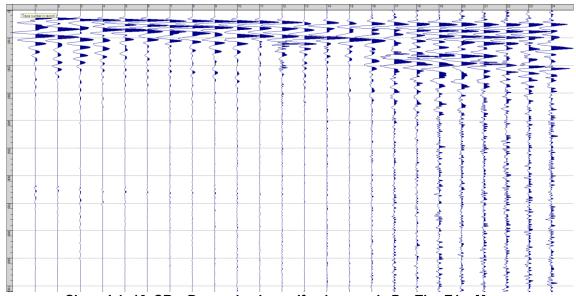
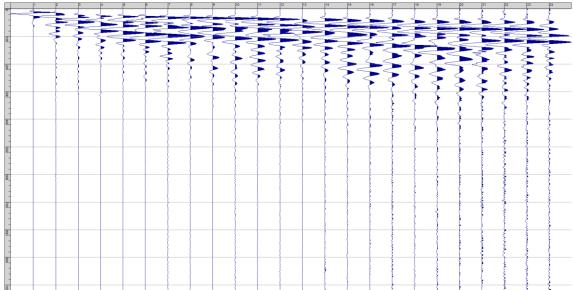
Micromed S.p.A. via Giotto, 2 - 31021 | Mogliano Veneto (TV) - ITALY info@tromino.it | Partita IVA 03906850262 Site Vers. 3.2 | 01/07/2011

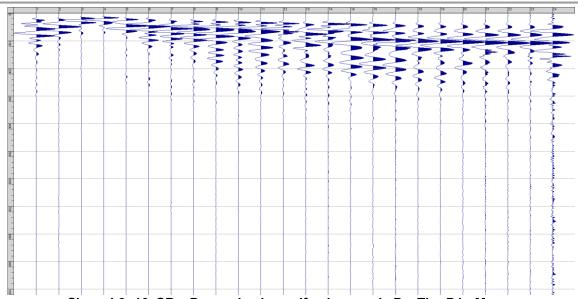
© 2011 Micromed S.p.A. | credits home | azienda | contatti prodotti | news | download

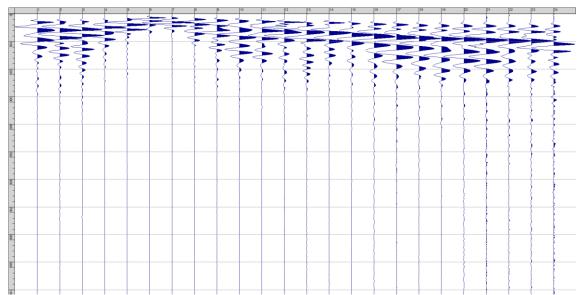
Allegato 1. 11: Software grilla per analisi microtremori

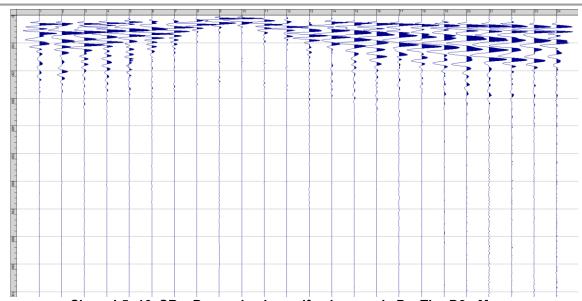
ALLEGATO TECNICO 2 – RISULTATI OTTENUTI DALLE STESE SISMICHE A RIFRAZIONE, PROVE MASW, ESAC E PROVE SISMICHE IN FORO DH

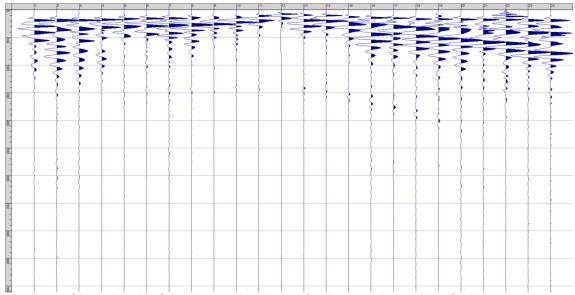
I. ALLEGATO GRAFICO: STESA SISMICA 10_SR ONDE P – SISMOGRAMMI - TABULATI PRIMI ARRIVI – TABULATI PROFONDITA' E VELOCITA' RIFRATTORI – DROMOCRONE — SEZIONI SISMOSTRATIGRAFICHE – TOMOGRAFIE

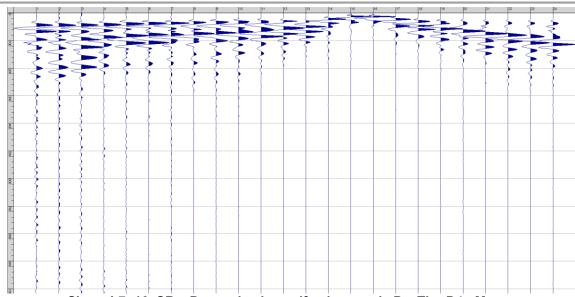




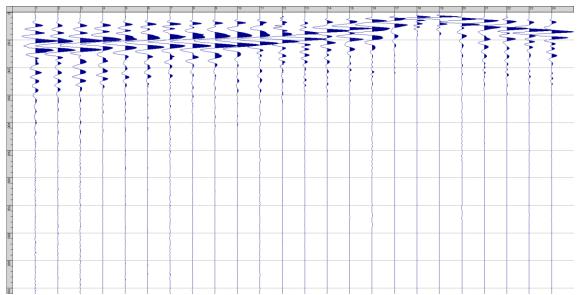

Fig. I-1: Ripresa fotografica ed inquadramento scala 1:5000

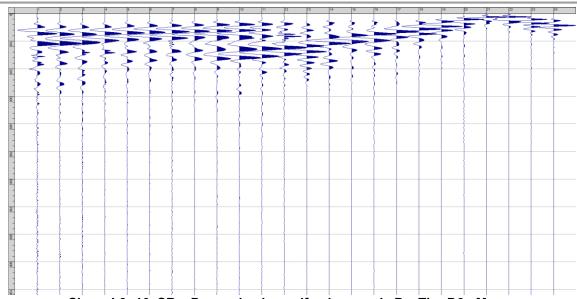

Sism. I-1: 10_SR - Prova sismica a rifrazione onde P - Tiro E1 - Mazza

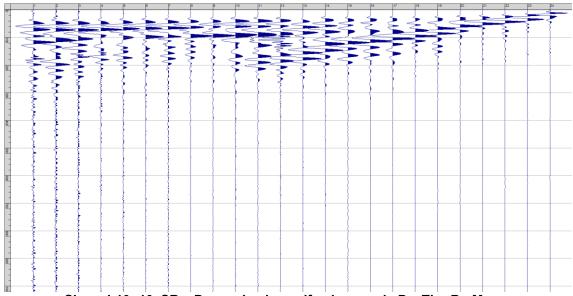

Sism. I-2: 10_SR - Prova sismica a rifrazione onde P - Tiro A - Mazza

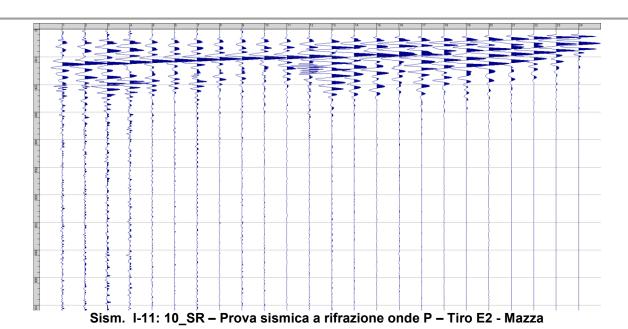

Sism. I-3: 10_SR – Prova sismica a rifrazione onde P – Tiro D1 - Mazza


Sism. I-4: 10_SR - Prova sismica a rifrazione onde P - Tiro D2 - Mazza


Sism. I-5: 10_SR – Prova sismica a rifrazione onde P – Tiro D3 - Mazza


Sism. I-6: 10_SR - Prova sismica a rifrazione onde P - Tiro C - Mazza


Sism. I-7: 10_SR - Prova sismica a rifrazione onde P - Tiro D4 - Mazza


Sism. I-8: 10_SR - Prova sismica a rifrazione onde P - Tiro D5 - Mazza

Sism. I-9: 10_SR - Prova sismica a rifrazione onde P - Tiro D6 - Mazza

Sism. I-10: 10_SR - Prova sismica a rifrazione onde P - Tiro B - Mazza

Tab. I-1: Stesa sismica 10_SR ONDE P - Schema dettagliato

GEOFONI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
DISTANZA PROGRESSIVA [m]	0	2.5	5	7.5	10	12.5	15	17.5	20	22.5	25	27.5	30	32.5	35	37.5	40	42.5	45	47.5	50	52.5	55	57.5
DISTANZA PARZIALI [m]	-	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
QUOTA [m]	288.6	288.8	288.9	289.0	289.1	289.3	289.4	289.5	289.6	289.8	289.9	290.0	290.1	290.2	290.4	290.5	290.6	290.7	290.8	290.9	291.1	291.2	291.3	291.4

Tab. I-2: Stesa sismica 10_SR ONDE P - Punti energizzazione (SCOPPIO)

	E1	Α	D1	D2	D3	С	D4	D5	D6	В	E2
	ESTERNO SX	ESTREMO SX	INTERMEDIO SX	INTERMEDIO SX	INTERMEDIO SX	CENTRALE	INTERMEDIO DX	INTERMEDIO DX	INTERMEDIO DX	ESTREMO SX	ESTERNO DX
POSIZIONE DAL GEOFONO 1 [m]	-12.50	-1.25	6.25	13.75	21.25	28.75	36.25	43.75	51.25	58.75	70.00
QUOTA [m]	288.0	288.6	288.9	289.3	289.7	290.1	290.4	290.8	291.1	291.5	292.0

Tab. I-3: Stesa sismica 10_SR ONDE P - Tabella scoppi - primi arrivi

GEOFONO	DISTANZA [m]	SCOPPIO E1 PRIMO ARRIVO [ms]	PRIMO	SCOPPIO D1 PRIMO ARRIVO [ms]	PRIMO	PRIMO	SCOPPIO C PRIMO ARRIVO [ms]	PRIMO	SCOPPIO D5 PRIMO ARRIVO [ms]	PRIMO	SCOPPIO B PRIMO ARRIVO [ms]	SCOPPIO E2 PRIMO ARRIVO [ms]
1	0	18	3	17	20	22	26	30	31	33	33	36
2	2.5	19	9	14	19	20	25	29	33	33	34	36
3	5	23	15	10	18	21	26	30	33	33	33	35
4	7.5	23	17	9	15	19	24	28	31	31	31	34
5	10	23	18	14	10	17	22	25	30	29	31	32
6	12.5	23	19	16	6	14	22	25	29	30	30	32
7	15	26	21	19	8	11	21	25	29	30	30	32
8	17.5	26	21	20	10	10	18	22	27	28	28	30
9	20	27	22	21	13	4	18	22	26	27	28	29
10	22.5	27	23	22	15	3	16	21	26	26	27	29
11	25	30	25	24	18	10	13	20	24	24	26	28
12	27.5	31	26	26	21	13	8	20	24	25	27	29
13	30	33	30	28	24	17	10	18	24	26	27	29
14	32.5	31	27	27	23	18	13	11	22	23	25	26
15	35	32	30	28	25	20	17	7	20	23	24	26
16	37.5	33	30	30	26	21	19	6	17	23	23	26
17	40	33	31	32	27	22	21	12	10	22	22	25
18	42.5	35	32	33	29	24	23	18	7	22	22	25
19	45	35	32	34	30	26	25	22	7	18	21	24
20	47.5	36	33	34	29	25	24	23	10	12	19	22
21	50	36	33	36	29	26	25	24	18	7	17	21
22	52.5	37	33	35	29	26	27	24	22	5	15	19
23	55	38	34	36	30	27	27	25	23	13	11	18
24	57.5	37	36	35	30	27	27	25	24	17	4	16

Tab. I-4:Stesa sismica 10_SR ONDE P - Sezione sismostratigrafica - Rifrattori spessori e velocità

		QUOTA PROFILO	VELOCITA'	QUOTA	VELOCITA'	QUOTA	VELOCITA'
GEOFONI	DISTANZA	TOPOGRAFICO	STRATO 1		STRATO 2		STRATO 3
STAZIONE	[m]	[m]	[m/s]	[m]	[m/s]	[m]	[m/s]
1	0	288.63	357	287.01	1181	283.34	2540
1.5	1.25	288.69	358	287.07	1181	283.29	2574
2	2.5	288.75	358	287.13	1181	283.23	2612
2.5	3.75	288.82	359	287.20	1181	283.17	2652
3	5	288.88	360	287.26	1181	283.10	2696
3.5	6.25	288.94	361	287.32	1181	283.03	2748
4	7.5	289.00	362	287.38	1181	282.95	2801
4.5	8.75	289.07	363	287.45	1182	282.87	2862
5	10	289.13	365	287.51	1183	282.79	2928
5.5	11.25	289.19	366	287.57	1180	282.71	2995
6	12.5	289.25	368	287.63	1171	282.64	3063
6.5	13.75	289.32	370	287.70	1165	282.56	3135
7	15	289.38	371	287.77	1162	282.50	3210
7.5	16.25	289.44	372	287.83	1160	282.44	3288
8	17.5	289.50	373	287.89	1157	282.39	3361
8.5	18.75	289.57	373	287.95	1154	282.35	3434
9	20	289.63	372	288.01	1151	282.33	3506
9.5	21.25	289.69	370	288.06	1148	282.31	3575
10	22.5	289.75	368	288.12	1144	282.31	3642
10.5	23.75	289.82	364	288.17	1140	282.32	3709
11	25	289.88	361	288.23	1142	282.34	3776
11.5	26.25	289.94	356	288.28	1147	282.38	3843
12	27.5	290.00	352	288.32	1148	282.42	3912
12.5	28.75	290.06	348	288.37	1146	282.48	3985
13	30	290.12	343	288.41	1144	282.56	4053
13.5	31.25	290.18	340	288.46	1142	282.65	4114
14	32.5	290.24	337	288.50	1140	282.75	4168
14.5	33.75	290.30	336	288.54	1138	282.87	4223
15	35	290.35	336	288.58	1136	282.99	4282
15.5	36.25	290.41	337	288.63	1134	283.13	4350
16	37.5	290.47	338	288.67	1133	283.27	4396
16.5	38.75	290.53	339	288.72	1131	283.42	4427
17	40	290.59	341	288.76	1129	283.58	4448
17.5	41.25	290.65	343	288.81	1125	283.74	4452
18	42.5	290.71	345	288.85	1119	283.91	4430
18.5	43.75	290.77	346	288.90	1121	284.08	4399
19	45	290.82	347	288.94	1124	284.25	4363
19.5	46.25	290.88	347	288.98	1125	284.42	4325
20	47.5	290.94	347	289.03	1125	284.60	4284
20.5	48.75	291.00	347	289.08	1125	284.78	4237
21	50	291.06	347	289.13	1125	284.96	4186
21.5	51.25	291.12	346	289.19	1126	285.15	4131
22	52.5	291.18	346	289.24	1126	285.33	4071
22.5	53.75	291.24	345	289.29	1128	285.50	4003
23	55	291.29	345	289.34	1132	285.67	3933
23.5	56.25	291.35	344	289.40	1135	285.83	3866
24	57.5	291.41	344	289.46	1131	285.97	3800

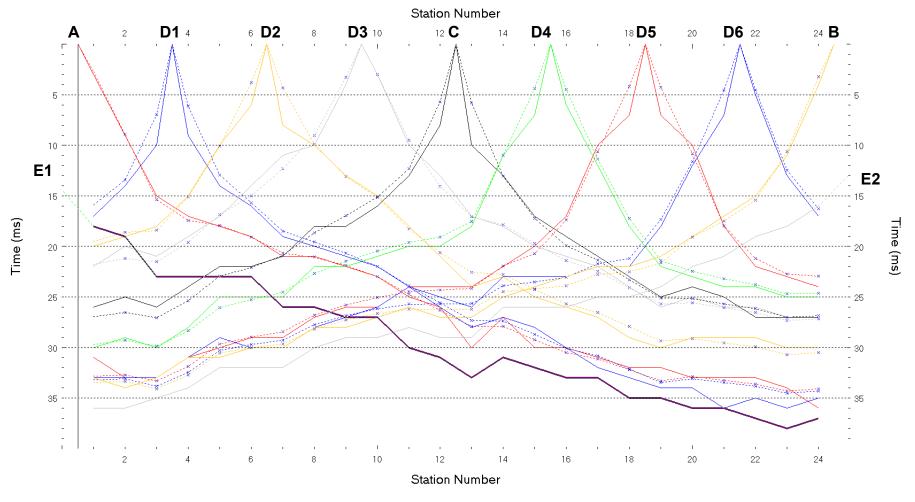


Fig. I-2: Stesa sismica 10_SR ONDE P – Dromocrone – Scala 1:300

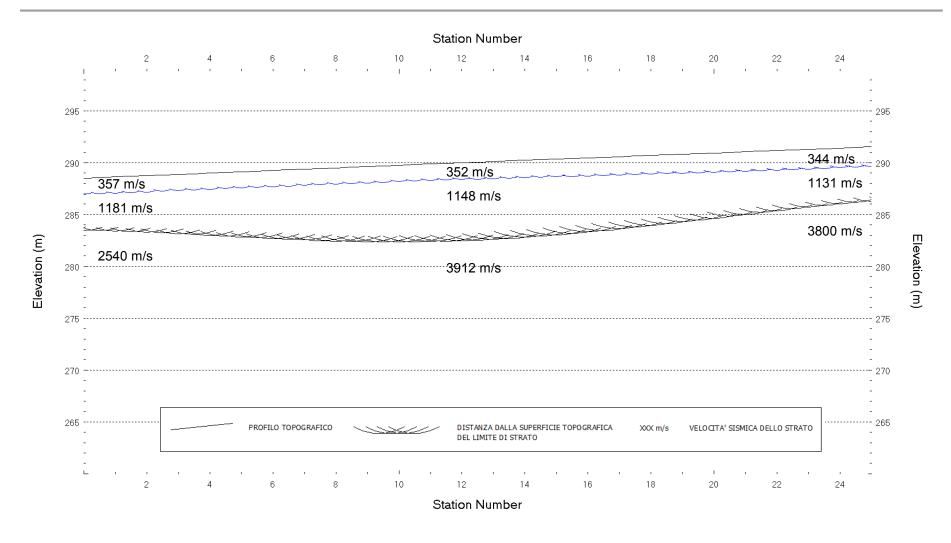


Fig. I-3: Stesa sismica 10_SR ONDE P – Sezione Sismostratigrafica – Scala 1:300

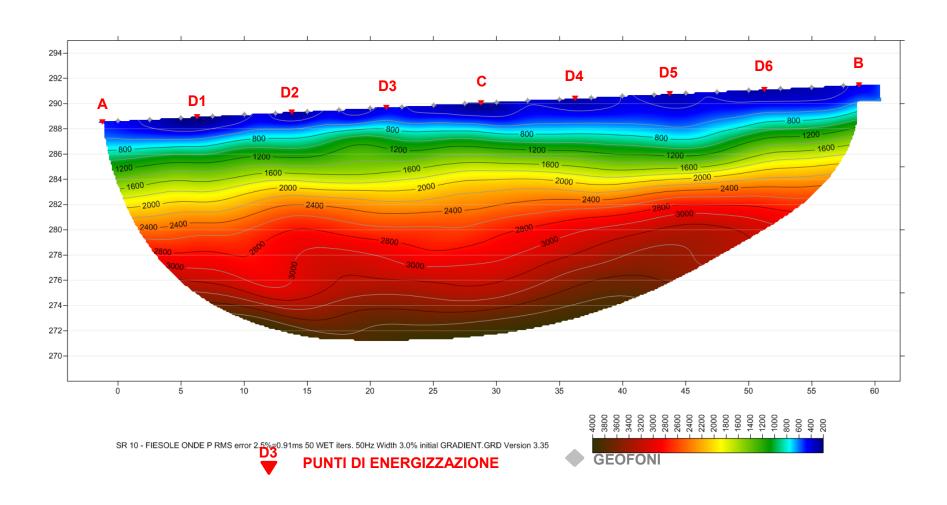
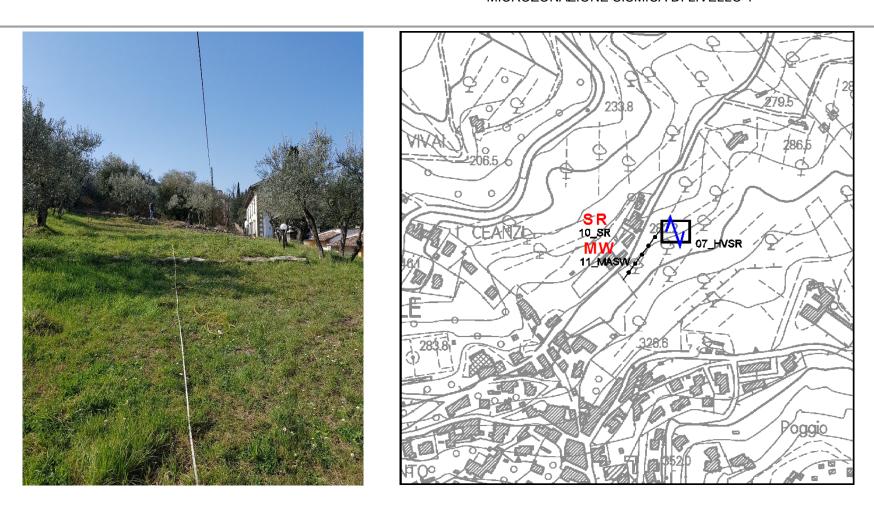
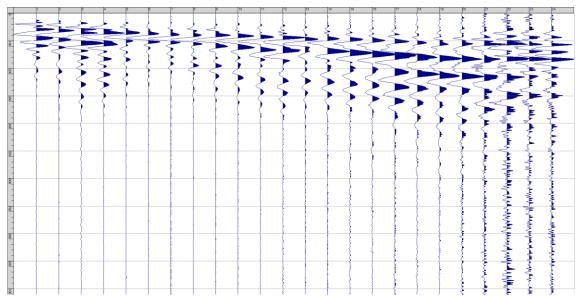
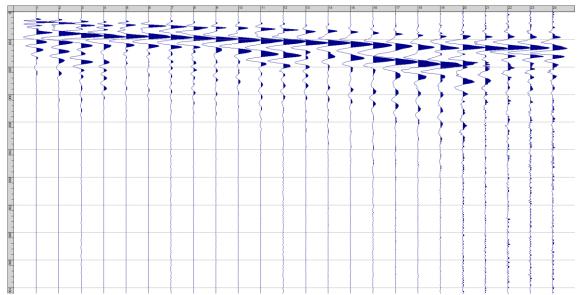
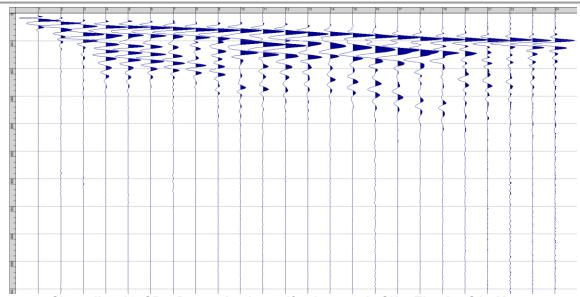
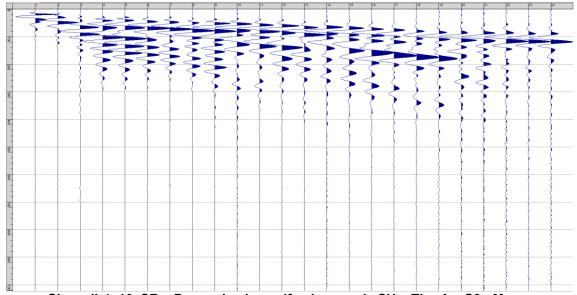


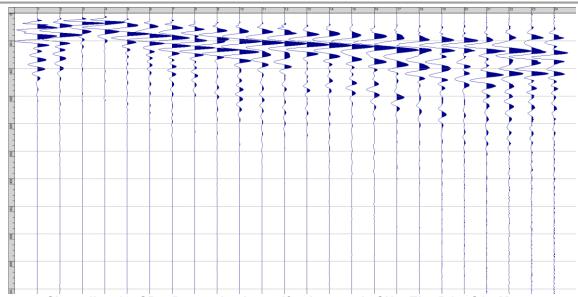
Fig. I-4: Stesa sismica 10_SR ONDE P – Tomografia sismica - Scala 1:300

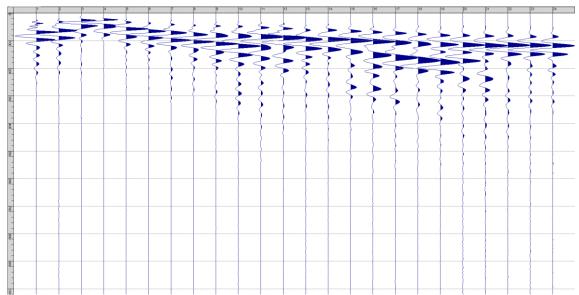
II. ALLEGATO GRAFICO: STESA SISMICA 10_SR ONDE SH – SISMOGRAMMI
 TABULATI PRIMI ARRIVI – TABULATI PROFONDITA' E VELOCITA'
 RIFRATTORI – DROMOCRONE — SEZIONI SISMOSTRATIGRAFICHE – TOMOGRAFIE

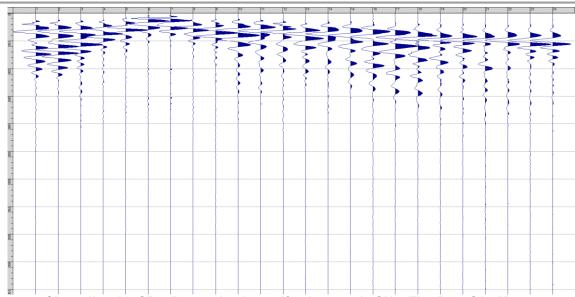




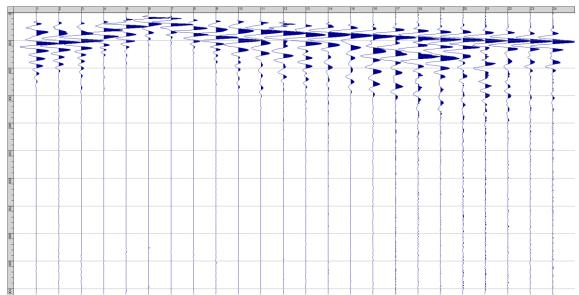

Fig. II-1: Ripresa fotografica ed inquadramento scala 1:5000

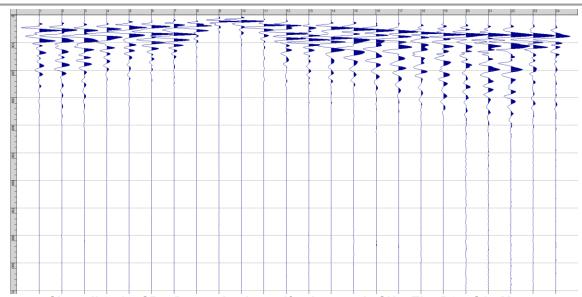

Sism. II-1: 10_SR - Prova sismica a rifrazione onde SH - Tiro E1 - S1 - Mazza

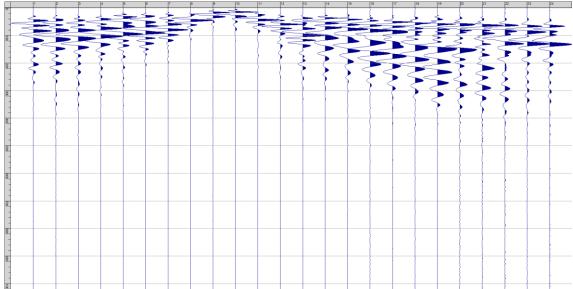

Sism. II-2: 10_SR – Prova sismica a rifrazione onde SH – Tiro E1 – S2 - Mazza

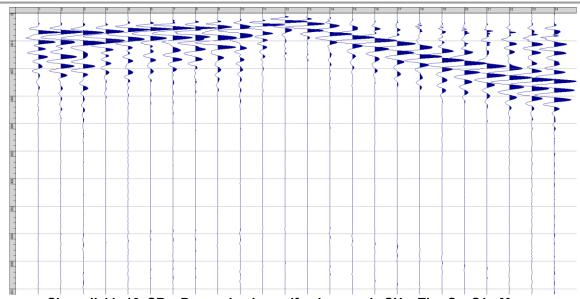

Sism. II-3: 10_SR - Prova sismica a rifrazione onde SH - Tiro A - S1 - Mazza

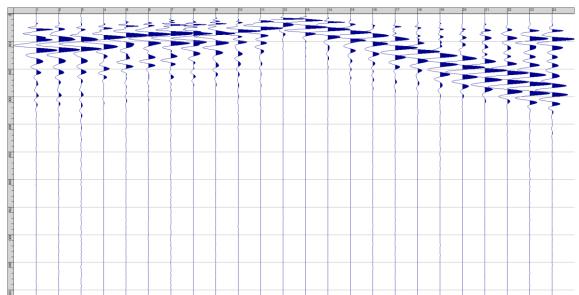

Sism. II-4: 10_SR - Prova sismica a rifrazione onde SH - Tiro A - S2 - Mazza

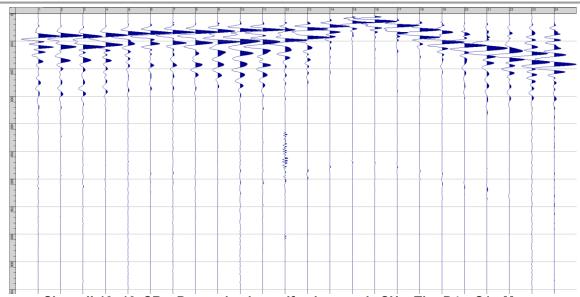

Sism. II-5: 10_SR – Prova sismica a rifrazione onde SH – Tiro D1 – S1 - Mazza

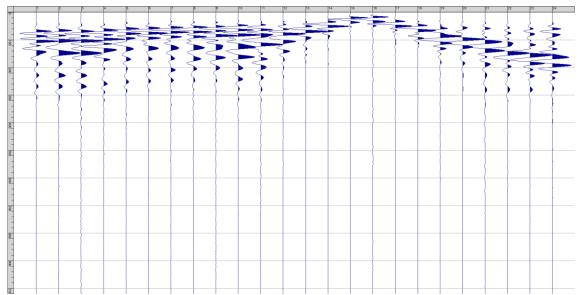

Sism. II-6: 10_SR - Prova sismica a rifrazione onde SH - Tiro D1 - S2 - Mazza

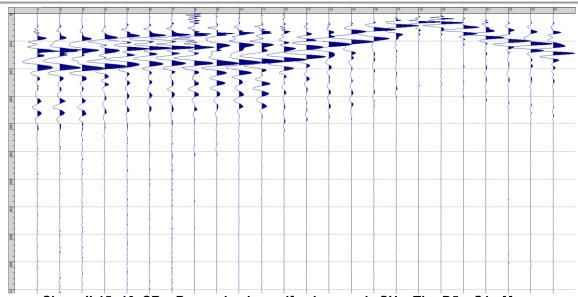

Sism. II-7: 10_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S1 - Mazza

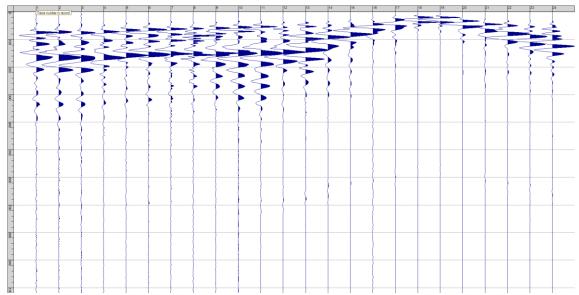

Sism. II-8: 10_SR - Prova sismica a rifrazione onde SH - Tiro D2 - S2 - Mazza

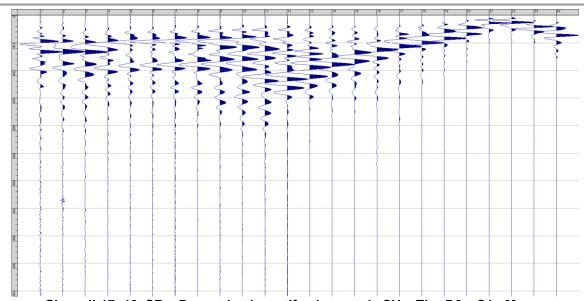

Sism. II-9: 10_SR - Prova sismica a rifrazione onde SH - Tiro D3 - S1 - Mazza

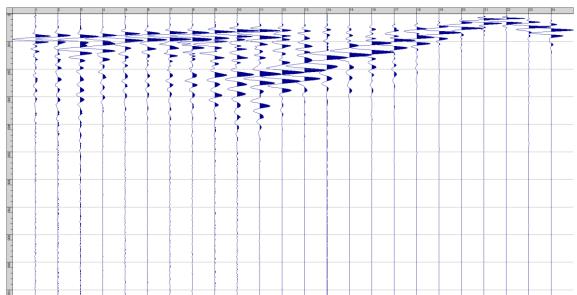

Sism. II-10: 10_SR - Prova sismica a rifrazione onde SH - Tiro D3 - S2 - Mazza

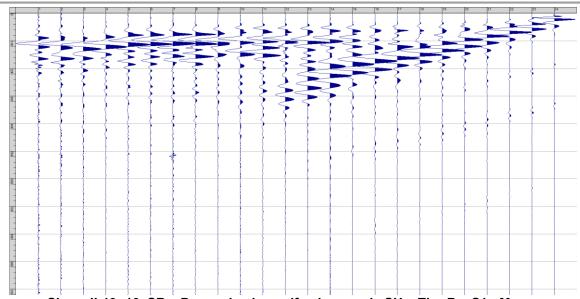

Sism. II-11: 10_SR – Prova sismica a rifrazione onde SH – Tiro C – S1 - Mazza

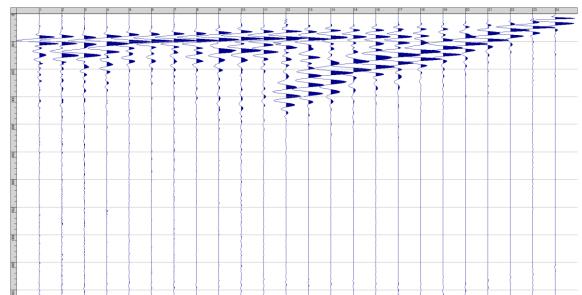

Sism. II-12: 10_SR - Prova sismica a rifrazione onde SH - Tiro C - S2 - Mazza

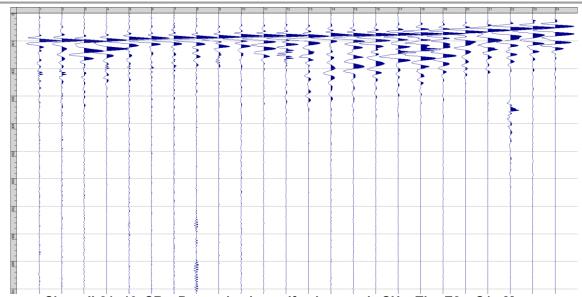

Sism. II-13: 10_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S1 - Mazza


Sism. II-14: 10_SR - Prova sismica a rifrazione onde SH - Tiro D4 - S2 - Mazza


Sism. II-15: 10_SR - Prova sismica a rifrazione onde SH - Tiro D5 - S1 - Mazza


Sism. II-16: 10_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S2 - Mazza


Sism. II-17: 10_SR - Prova sismica a rifrazione onde SH - Tiro D6 - S1 - Mazza


Sism. II-18: 10_SR - Prova sismica a rifrazione onde SH - Tiro D6 - S2 - Mazza

Sism. II-19: 10_SR - Prova sismica a rifrazione onde SH - Tiro B - S1 - Mazza

Sism. II-20: 10_SR - Prova sismica a rifrazione onde SH - Tiro B - S2 - Mazza

Sism. II-21: 10_SR - Prova sismica a rifrazione onde SH - Tiro E2 - S1 - Mazza

Sism. II-22: 10_SR - Prova sismica a rifrazione onde SH - Tiro E2 - S1- Mazza

Tab. II-1: Stesa sismica 10_SR ONDE SH - Schema dettagliato

GEOFONI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
DISTANZA PROGRESSIVA [m]	0	2.5	5	7.5	10	12.5	15	17.5	20	22.5	25	27.5	30	32.5	35	37.5	40	42.5	45	47.5	50	52.5	55	57.5
DISTANZA PARZIALI [m]	-	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
QUOTA [m]	288.6	288.8	288.9	289.0	289.1	289.3	289.4	289.5	289.6	289.8	289.9	290.0	290.1	290.2	290.4	290.5	290.6	290.7	290.8	290.9	291.1	291.2	291.3	291.4

Tab. II-2: Stesa sismica 10_SR ONDE SH - Punti energizzazione (SCOPPIO)

	E1	Α	D1	D2	D3	С	D4	D5	D6	В	E2
	ESTERNO SX	ESTREMO SX	INTERMEDIO SX	INTERMEDIO SX	INTERMEDIO SX	CENTRALE	INTERMEDIO DX	INTERMEDIO DX	INTERMEDIO DX	ESTREMO SX	ESTERNO DX
POSIZIONE DAL GEOFONO 1 [m]	-12.50	-1.25	6.25	13.75	21.25	28.75	36.25	43.75	51.25	58.75	70.00
QUOTA [m]	288.0	288.6	288.9	289.3	289.7	290.1	290.4	290.8	291.1	291.5	292.0

Tab. II-3: Stesa sismica 10_SR ONDE SH- Tabella scoppi - primi arrivi

GEOFONO	DISTANZA [m]	SCOPPIO E1 PRIMO ARRIVO [ms]	PRIMO	PRIMO	PRIMO	SCOPPIO D3 PRIMO ARRIVO [ms]	PRIMO	PRIMO	SCOPPIO D5 PRIMO ARRIVO [ms]	PRIMO	SCOPPIO B PRIMO ARRIVO [ms]	SCOPPIO E2 PRIMO ARRIVO [ms]
1	0	30	11	30	35	38	47	59	63	66	71	83
2	2.5	31	20	27	32	35	46	57	60	64	69	80
3	5	37	30	14	32	35	47	56	61	65	69	83
4	7.5	39	32	14	27	31	44	53	60	62	67	80
5	10	-1000	34	24	19	26	38	50	55	60	60	76
6	12.5	37	34	30	9	23	35	49	52	57	57	71
7	15	39	36	34	9	19	33	47	51	56	57	72
8	17.5	43	40	40	21	21	31	43	48	54	53	71
9	20	45	42	42	25	9	28	43	48	52	51	69
10	22.5	44	44	42	26	7	26	41	45	47	49	67
11	25	46	45	45	29	17	22	38	43	47	47	66
12	27.5	48	49	48	33	24	9	37	45	47	49	66
13	30	53	53	52	39	27	10	32	43	48	49	65
14	32.5	53	56	53	39	31	22	27	39	45	47	64
15	35	55	59	57	43	35	32	9	31	45	47	61
16	37.5	59	63	60	46	40	39	8	25	45	45	60
17	40	61	66	64	49	43	41	20	18	41	44	57
18	42.5	64	71	68	54	44	45	33	9	37	43	52
19	45	63	73	72	56	46	48	40	9	30	41	54
20	47.5	65	76	72	58	50	52	45	20	22	36	50
21	50	67	78	74	58	51	51	46	30	9	33	44
22	52.5	68	78	75	59	51	51	50	36	9	24	38
23	55	69	79	76	60	53	51	48	42	25	21	31
24	57.5	70	80	75	60	52	49	48	43	32	7	27

Tab. II-4:Stesa sismica 10_SR ONDE SH – Sezione sismostratigrafica - Rifrattori spessori e velocità

		QUOTA PROFILO	VELOCITA'	QUOTA	VELOCITA'	QUOTA	VELOCITA'
GEOFONI	DISTANZA	TOPOGRAFICO	STRATO 1	STRATO 1	STRATO 2	STRATO 2	STRATO 3
STAZIONE	[m]	[m]	[m/s]	[m]	[m/s]	[m]	[m/s]
1	0	288.63	198	287.29	593	283.34	1612
1.5	1.25	288.69	198	287.35	593	283.29	1616
2	2.5	288.75	197	287.41	593	283.24	1620
2.5	3.75	288.82	197	287.47	593	283.19	1621
3	5	288.88	197	287.54	593	283.13	1619
3.5	6.25	288.94	198	287.60	593	283.07	1616
4	7.5	289.00	198	287.66	593	283.01	1610
4.5	8.75	289.07	200	287.72	593	282.95	1601
5	10	289.13	201	287.79	593	282.89	1589
5.5	11.25	289.19	202	287.85	593	282.84	1577
6	12.5	289.25	204	287.91	593	282.80	1564
6.5	13.75	289.32	206	287.97	593	282.76	1553
7	15	289.38	207	288.04	593	282.73	1543
7.5	16.25	289.44	209	288.10	593	282.71	1529
8	17.5	289.50	210	288.16	592	282.70	1513
8.5	18.75	289.57	211	288.22	592	282.70	1493
9	20	289.63	213	288.29	592	282.71	1476
9.5	21.25	289.69	212	288.34	592	282.73	1459
10	22.5	289.75	211	288.40	591	282.77	1441
10.5	23.75	289.82	210	288.47	591	282.81	1424
11	25	289.88	209	288.53	591	282.86	1409
11.5	26.25	289.94	207	288.59	591	282.91	1392
12	27.5	290.00	206	288.65	591	282.98	1379
12.5	28.75	290.06	204	288.71	591	283.06	1365
13	30	290.12	202	288.77	591	283.14	1354
13.5	31.25	290.18	200	288.83	591	283.23	1345
14	32.5	290.24	198	288.89	591	283.33	1336
14.5	33.75	290.30	198	288.95	591	283.43	1327
15	35	290.35	198	289.00	591	283.54	1321
15.5	36.25	290.41	198	289.06	591	283.65	1317
16	37.5	290.47	199	289.12	591	283.76	1313
16.5	38.75	290.53	199	289.18	591	283.88	1307
17	40	290.59	199	289.24	591	283.99	1298
17.5	41.25	290.65	198	289.30	591	284.11	1289
18	42.5	290.71	198	289.36	591	284.23	1279
18.5	43.75	290.77	198	289.42	591	284.34	1269
19	45	290.82	197	289.47	591	284.45	1261
19.5	46.25	290.88	196	289.53	591	284.56	1248
20	47.5	290.94	195	289.59	591	284.67	1234
20.5	48.75	291.00	194	289.65	591	284.78	1218
21	50	291.06	193	289.71	591	284.90	1201
21.5	51.25	291.12	194	289.77	591	285.02	1183
22	52.5	291.18	194	289.83	591	285.14	1165
22.5	53.75	291.24	194	289.89	591	285.25	1146
23	55	291.29	195	289.94	591	285.36	1128
23.5	56.25	291.35	196	290.00	591	285.46	1111
24	57.5	291.41	197	290.06	591	285.56	1096

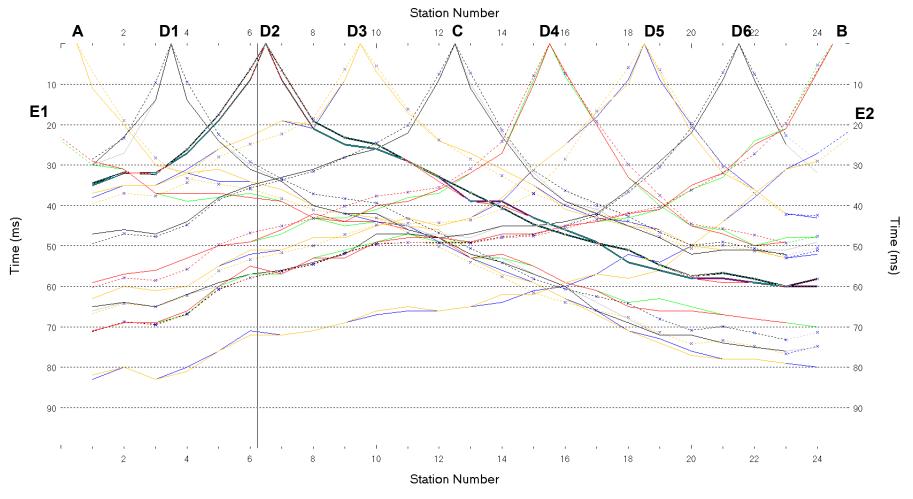
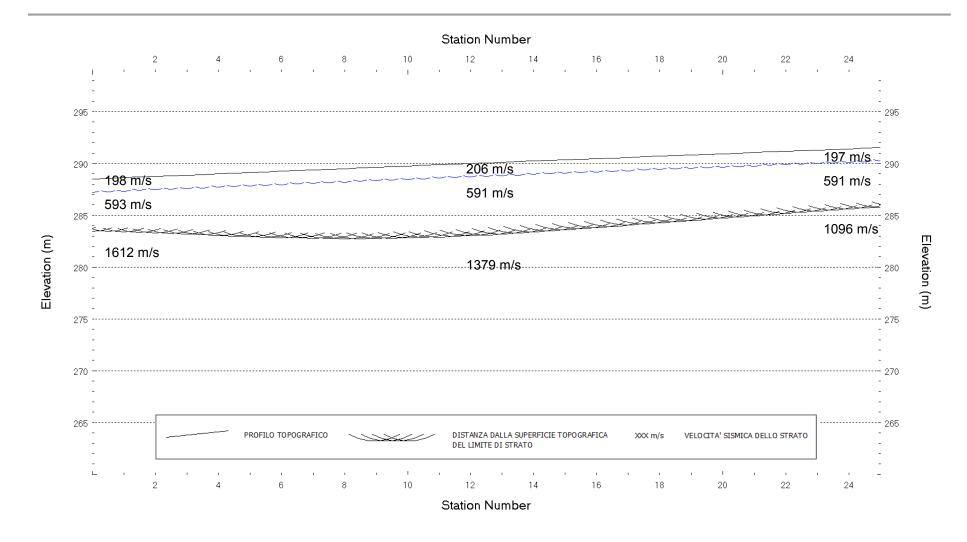
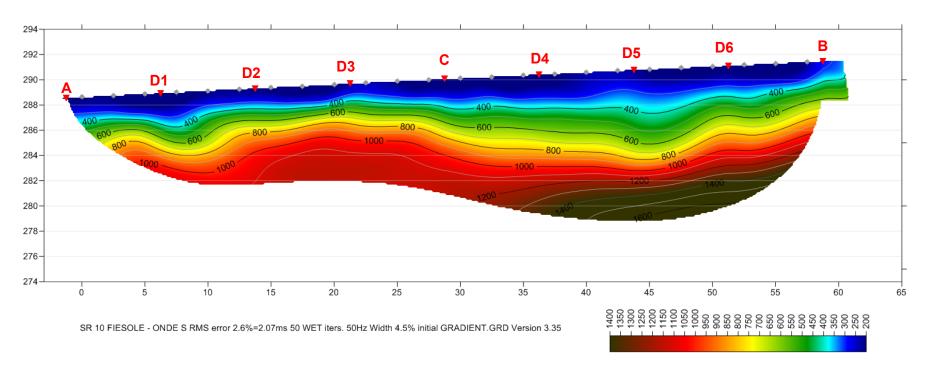
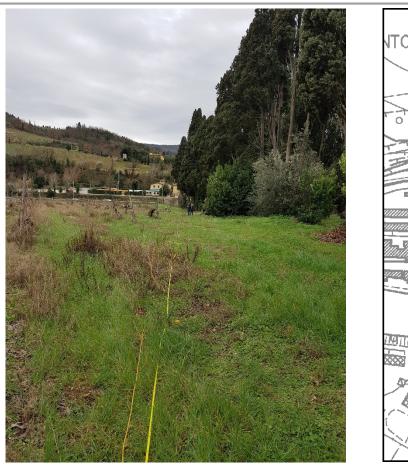


Fig. II-2:Stesa sismica 10_SR ONDE SH - Dromocrone - Scala 1:300

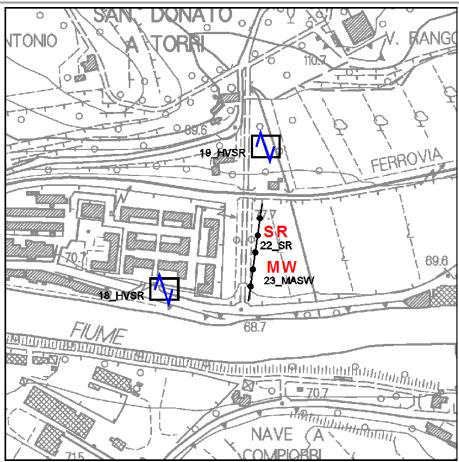
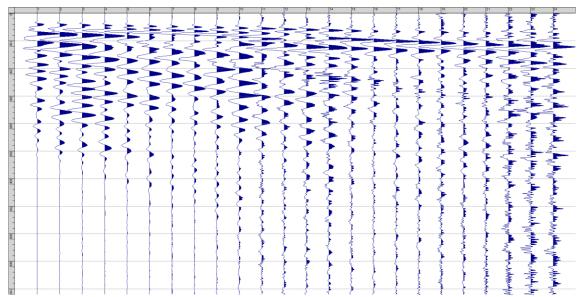
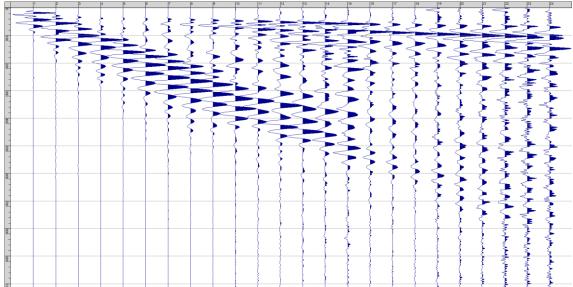



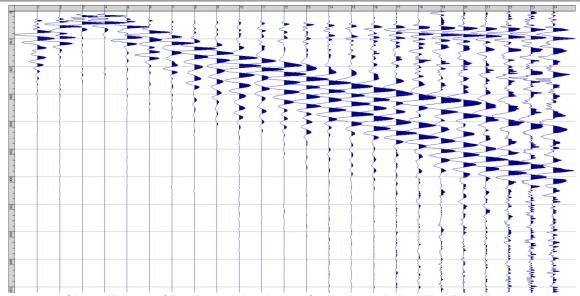

Fig. II-3: Stesa sismica 10_SR ONDE SH - Sezione Sismostratigrafica - Scala 1:300

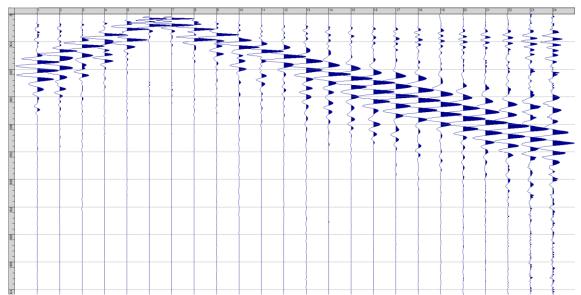
PUNTI DI ENERGIZZAZIONE GEOFONI

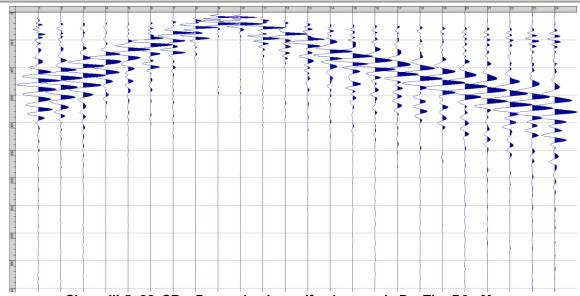
Fig. II-4: Stesa sismica 10_SR ONDE SH – Tomografia sismica - Scala 1:300

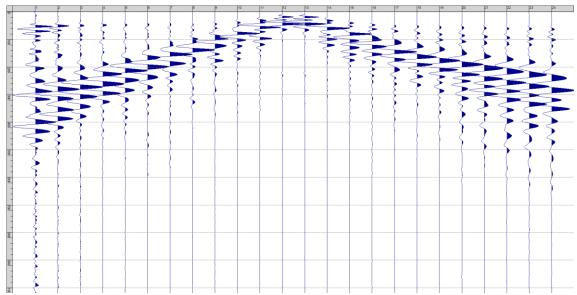
III. ALLEGATO GRAFICO: STESA SISMICA 22_SR ONDE P – SISMOGRAMMI - TABULATI PRIMI ARRIVI – TABULATI PROFONDITA' E VELOCITA' RIFRATTORI – DROMOCRONE — SEZIONI SISMOSTRATIGRAFICHE – TOMOGRAFIE

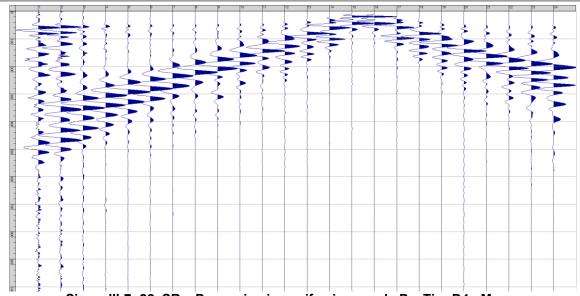




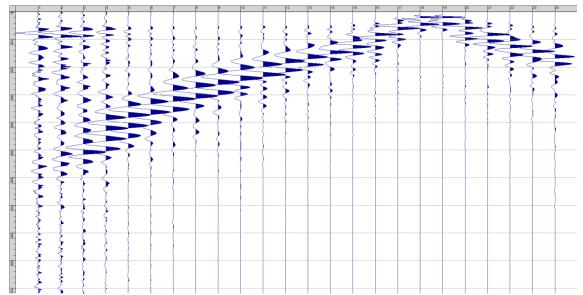

Fig. III-1: Ripresa fotografica ed inquadramento scala 1:5000

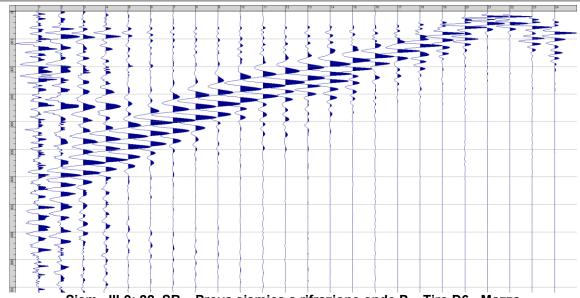

Sism. III-1: 22_SR - Prova sismica a rifrazione onde P - Tiro E1 - Mazza

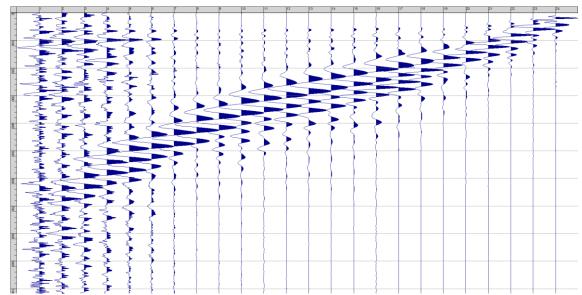

Sism. III-2: 22_SR – Prova sismica a rifrazione onde P – Tiro A - Mazza

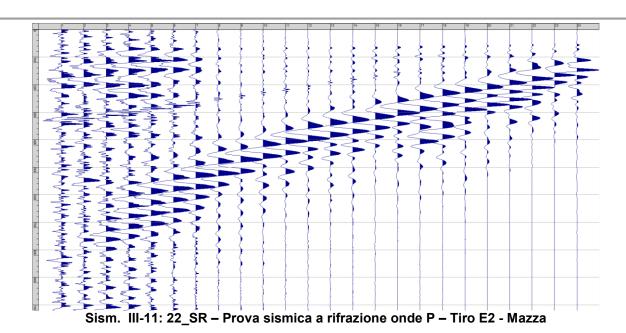

Sism. III-3: 22_SR - Prova sismica a rifrazione onde P - Tiro D1 - Mazza


Sism. III-4: 22_SR – Prova sismica a rifrazione onde P – Tiro D2 - Mazza


Sism. III-5: 22_SR – Prova sismica a rifrazione onde P – Tiro D3 - Mazza


Sism. III-6: 22_SR – Prova sismica a rifrazione onde P – Tiro C - Mazza


Sism. III-7: 22_SR – Prova sismica a rifrazione onde P – Tiro D4 - Mazza


Sism. III-8: 22_SR - Prova sismica a rifrazione onde P - Tiro D5 - Mazza

Sism. III-9: 22_SR – Prova sismica a rifrazione onde P – Tiro D6 - Mazza

Sism. III-10: 22_SR – Prova sismica a rifrazione onde P – Tiro B - Mazza

Tab. III-1: Stesa sismica 22_SR ONDE P - Schema dettagliato

GEOFONI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
DISTANZA PROGRESSIVA [m]	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80	84	88	92
DISTANZA PARZIALI [m]	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
QUOTA [m]	70.6	70.7	70.9	71.0	71.1	71.2	71.3	71.5	71.6	71.7	71.8	71.9	72.1	72.2	72.3	72.4	72.6	72.7	72.8	72.9	73.0	73.2	73.3	73.4

Tab. III-2: Stesa sismica 22_SR ONDE P - Punti energizzazione (SCOPPIO)

	E1	Α	D1	D2	D3	С	D4	D5	D6	В	E2
<u> </u>	ESTERNO SX	ESTREMO SX	INTERMEDIO SX	INTERMEDIO SX	INTERMEDIO SX	CENTRALE	INTERMEDIO DX	INTERMEDIO DX	INTERMEDIO DX	ESTREMO SX	ESTERNO DX
POSIZIONE DAL GEOFONO 1 [m]	-20.00	-2.00	10.00	22.00	34.00	46.00	58.00	70.00	82.00	94.00	112.00
QUOTA [m]	70.0	70.5	70.9	71.3	71.6	72.0	72.4	72.7	73.1	73.5	74.0

Tab. III-3: Stesa sismica 22_SR ONDE P - Tabella scoppi - primi arrivi

GEOFONO	l Iml I	SCOPPIO E1 PRIMO ARRIVO [ms]	SCOPPIO A PRIMO ARRIVO [ms]	PRIMO	PRIMO	SCOPPIO D3 PRIMO ARRIVO [ms]	PRIMO	PRIMO	PRIMO	SCOPPIO D6 PRIMO ARRIVO [ms]	SCOPPIO B PRIMO ARRIVO [ms]	SCOPPIO E2 PRIMO ARRIVO [ms]
1	0	30	8	26	30	37	42	42	50	53	59	59
2	2.5	31	20	19	28	35	39	41	47	53	57	59
3	5	32	26	9	27	33	39	42	47	53	56	59
4	7.5	34	28	7	25	31	38	41	46	50	55	59
5	10	35	29	19	19	32	36	41	46	49	55	58
6	12.5	37	31	26	8	31	36	41	45	50	54	58
7	15	37	32	27	8	26	35	39	45	48	52	58
8	17.5	39	34	29	19	18	34	39	43	49	53	58
9	20	40	35	30	26	8	34	39	44	49	54	58
10	22.5	39	37	32	29	8	27	38	43	47	53	57
11	25	42	38	33	31	17	19	36	42	47	51	56
12	27.5	44	41	36	33	28	9	35	42	47	52	57
13	30	47	43	38	36	33	9	26	41	46	51	56
14	32.5	48	45	41	38	36	19	20	40	46	50	56
15	35	51	46	42	40	38	28	9	36	43	48	55
16	37.5	51	47	43	41	40	37	9	30	42	47	53
17	40	53	49	45	42	41	39	21	20	40	45	51
18	42.5	55	51	46	44	43	42	29	10	36	44	51
19	45	57	52	48	46	45	44	36	10	28	44	49
20	47.5	57	54	49	47	45	44	39	21	19	43	48
21	50	58	55	50	49	47	46	42	28	9	34	47
22	52.5	61	57	52	51	48	47	43	35	9	26	45
23	55	60	58	52	52	50	49	44	41	20	17	43
24	57.5	62	59	53	52	52	51	46	43	28	10	41

Tab. III-4: Stesa sismica 22_SR ONDE P - Sezione sismostratigrafica - Rifrattori spessori e velocità

GEOFONI	DISTANZA	QUOTA PROFILO	VELOCITA'	QUOTA	VELOCITA'	QUOTA	VELOCITA'
STAZIONE	[m]	TOPOGRAFICO	STRATO 1	STRATO 1	STRATO 2	STRATO 2	STRATO 3
JIAZIONE	[111]	[m]	[m/s]	[m]	[m/s]	[m]	[m/s]
1	0	70.61	365	67.10	2061	62.76	2755
1.5	2	70.67	364	67.15	2070	62.70	2766
2	4	70.73	364	67.20	2081	62.63	2779
2.5	6	70.79	363	67.25	2092	62.54	2794
3	8	70.85	362	67.28	2103	62.45	2810
3.5	10	70.91	361	67.32	2122	62.35	2826
4	12	70.97	360	67.35	2134	62.24	2842
4.5	14	71.03	358	67.38	2148	62.12	2858
5	16	71.09	357	67.41	2158	62.01	2883
5.5	18	71.15	356	67.44	2161	61.90	2913
6	20	71.21	355	67.47	2155	61.79	2946
6.5	22	71.27	354	67.50	2136	61.66	2987
7	24	71.33	353	67.53	2102	61.52	3037
7.5	26	71.39	353	67.56	2067	61.37	3094
8	28	71.45	353	67.59	2027	61.21	3161
8.5	30	71.52	353	67.62	1979	61.05	3236
9	32	71.58	353	67.64	1920	60.86	3319
9.5	34	71.64	353	67.65	1865	60.66	3409
10	36	71.70	352	67.66	1798	60.42	3504
10.5	38	71.76	353	67.65	1735	60.17	3603
11	40	71.82	354	67.64	1724	59.90	3707
11.5	42	71.88	355	67.61	1749	59.64	3814
12	44	71.94	355	67.57	1784	59.39	3928
12.5	46	72.00	355	67.52	1818	59.14	4044
13	48	72.06	354	67.45	1848	58.87	4166
13.5	50	72.12	357	67.39	1873	58.62	4297
14	52	72.18	359	67.33	1903	58.39	4425
14.5	54	72.24	362	67.28	1938	58.18	4547
15	56	72.30	364	67.24	1976	57.97	4667
15.5	58	72.36	365	67.21	2014	57.77	4773
16	60	72.42	366	67.20	2037	57.57	4862
16.5	62	72.49	365	67.21	2001	57.39	4932
17	64	72.55	363	67.25	1953	57.21	4979
17.5	66	72.61	368	67.29	1910	57.07	5008
18	68	72.67	373	67.36	1874	56.94	5032
18.5	70	72.73	369	67.44	1842	56.82	5025
19	72	72.79	365	67.53	1819	56.73	5004
19.5	74	72.85	363	67.61	1793	56.67	4975
20	76	72.91	361	67.69	1766	56.65	4937
20.5	78	72.97	361	67.77	1739	56.67	4913
21	80	73.03	361	67.86	1714	56.72	4869
21.5	82	73.09	364	67.93	1692	56.79	4811
22	84	73.15	368	68.00	1679	56.85	4747
22.5	86	73.21	368	68.06	1666	56.92	4674
23	88	73.27	368	68.11	1654	57.00	4598
23.5	90	73.33	371	68.16	1642	57.10	4513
24	92	73.39	375	68.21	1632	57.18	4421

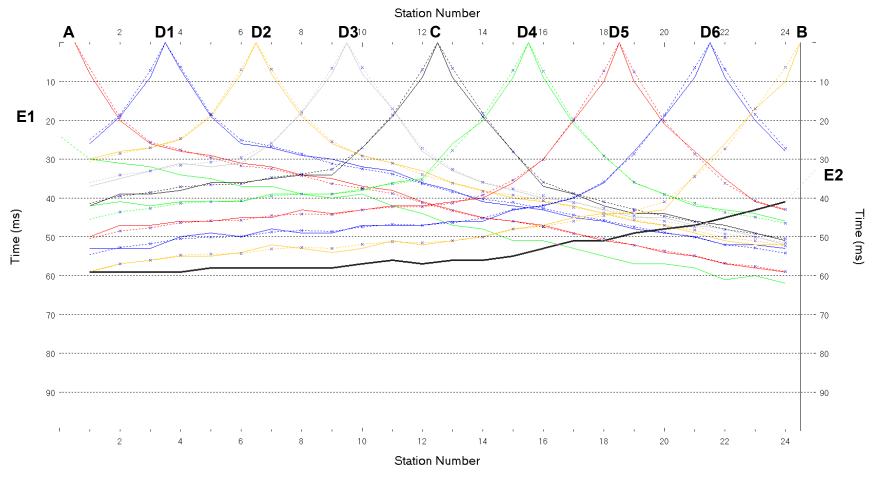


Fig. III-2: Stesa sismica 22_SR ONDE P - Dromocrone - Scala 1:500

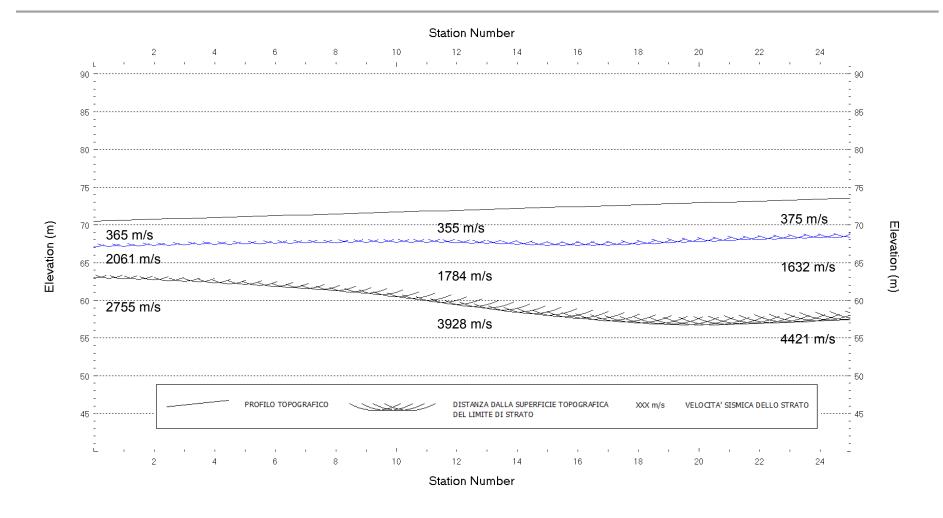


Fig. III-3: Stesa sismica 22_SR ONDE P – Sezione Sismostratigrafica – Scala 1:500

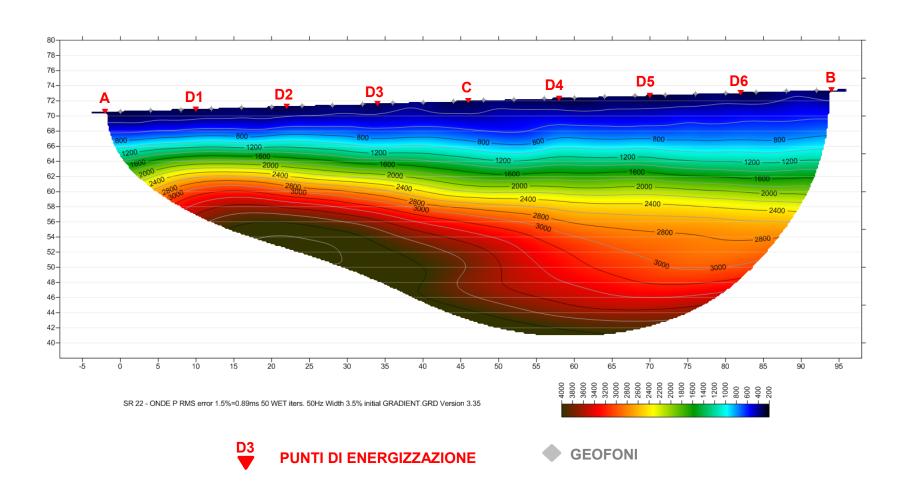
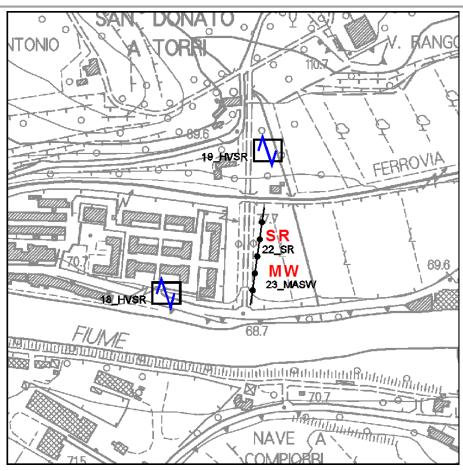
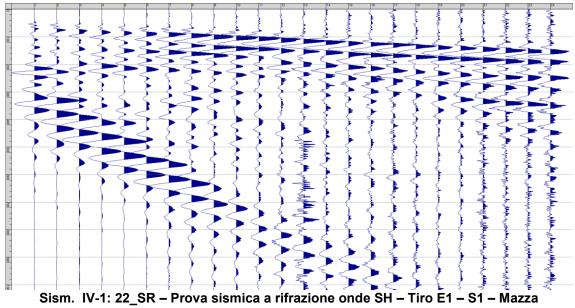
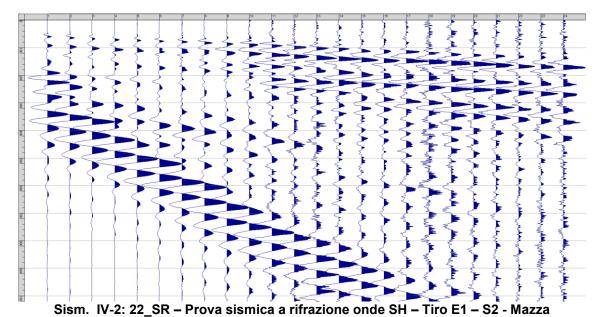
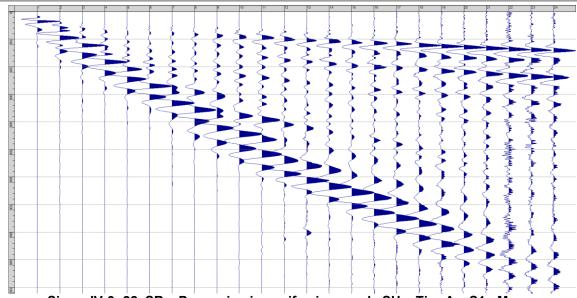
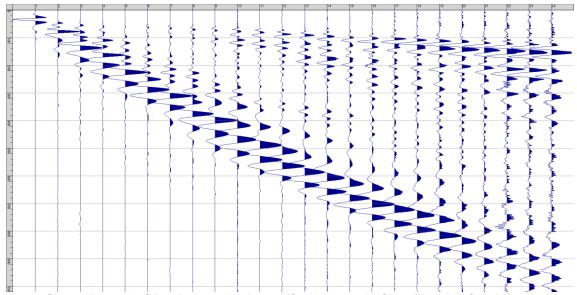
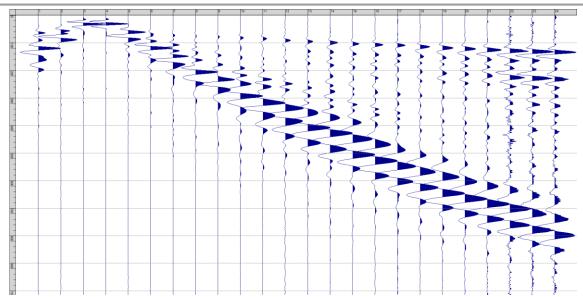


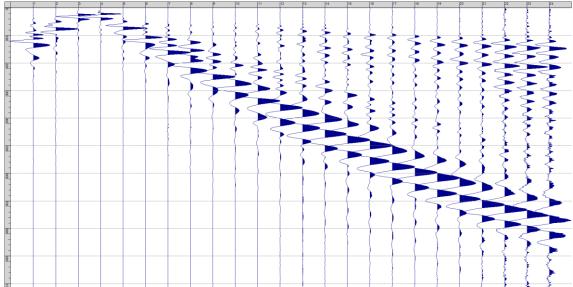
Fig. III-4: Stesa sismica 22_SR ONDE P – Tomografia sismica - Scala 1:500

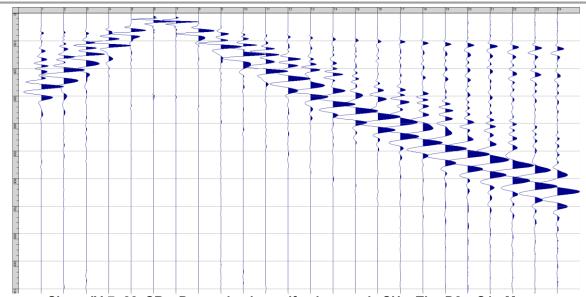
IV. ALLEGATO GRAFICO: STESA SISMICA 22_SR ONDE SH – SISMOGRAMMI
- TABULATI PRIMI ARRIVI – TABULATI PROFONDITA' E VELOCITA'
RIFRATTORI – DROMOCRONE — SEZIONI SISMOSTRATIGRAFICHE –
TOMOGRAFIE

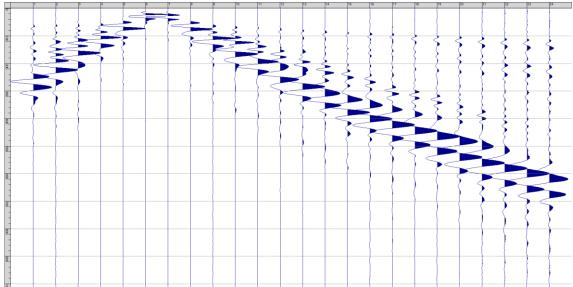





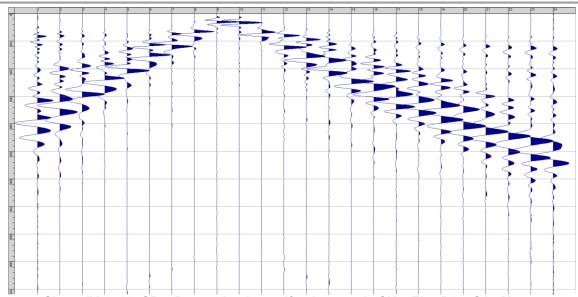

Fig. IV-1: Ripresa fotografica ed inquadramento scala 1:5000

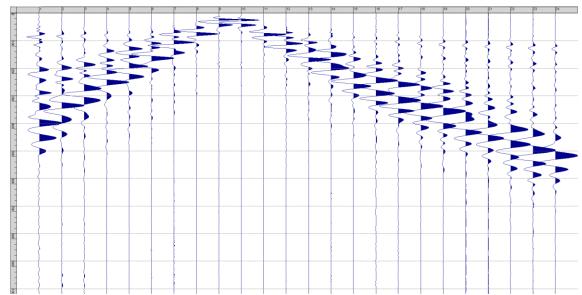


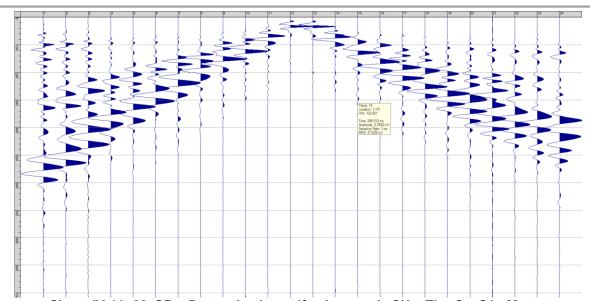

Sism. IV-3: 22_SR – Prova sismica a rifrazione onde SH – Tiro A – S1 - Mazza

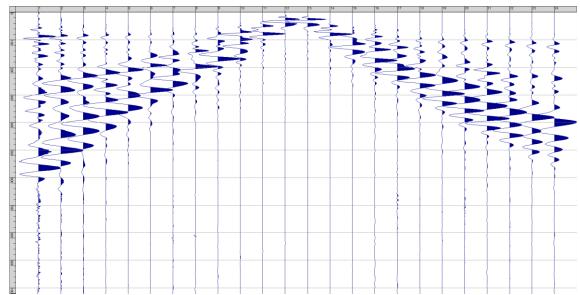

Sism. IV-4: 22_SR - Prova sismica a rifrazione onde SH - Tiro A - S2 - Mazza

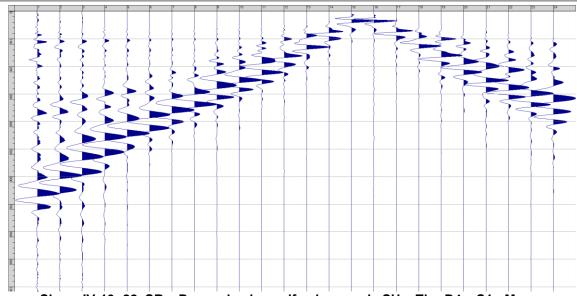

Sism. IV-5: 22_SR - Prova sismica a rifrazione onde SH - Tiro D1 - S1 - Mazza

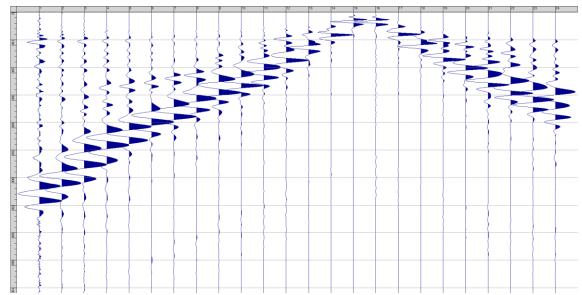

Sism. IV-6: 22_SR – Prova sismica a rifrazione onde SH – Tiro D1 – S2 - Mazza

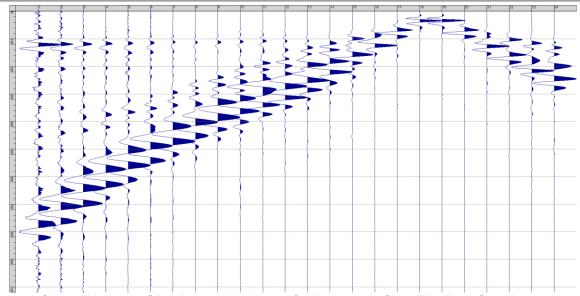

Sism. IV-7: 22_SR - Prova sismica a rifrazione onde SH - Tiro D2 - S1 - Mazza

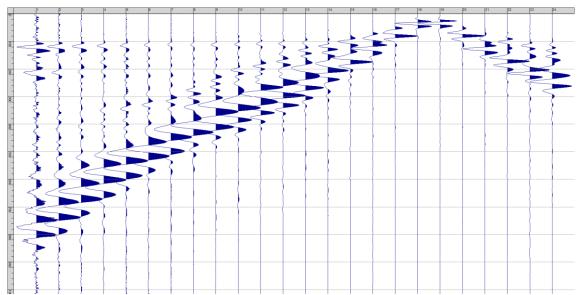

Sism. IV-8: 22_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S2 - Mazza

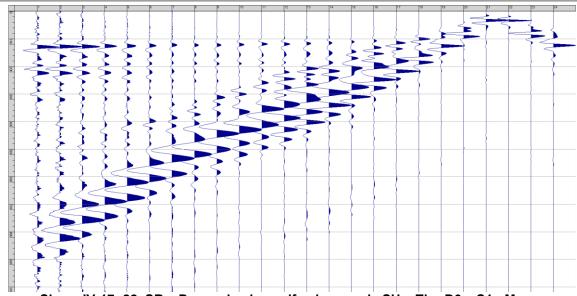

Sism. IV-9: 22_SR - Prova sismica a rifrazione onde SH - Tiro D3 - S1 - Mazza

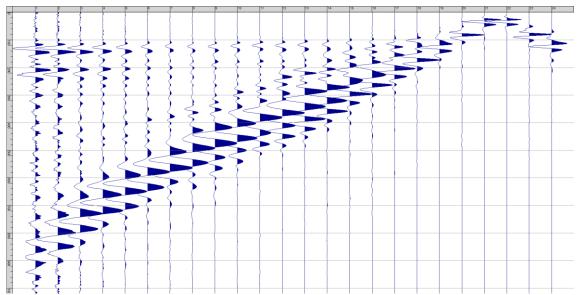

Sism. IV-10: 22_SR - Prova sismica a rifrazione onde SH - Tiro D3 - S2 - Mazza

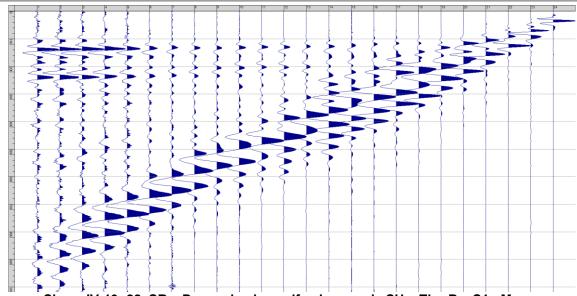

Sism. IV-11: 22_SR – Prova sismica a rifrazione onde SH – Tiro C – S1 - Mazza

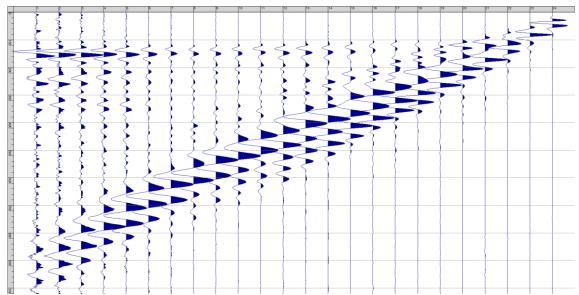

Sism. IV-12: 22_SR - Prova sismica a rifrazione onde SH - Tiro C - S2 - Mazza

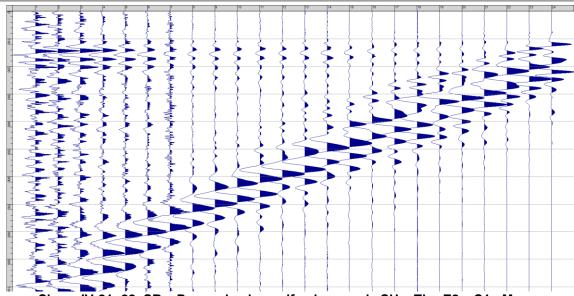

Sism. IV-13: 22_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S1 - Mazza

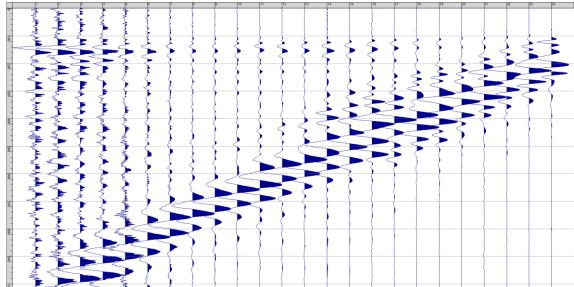

Sism. IV-14: 22_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S2 - Mazza


Sism. IV-15: 22_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S1 - Mazza


Sism. IV-16: 22_SR - Prova sismica a rifrazione onde SH - Tiro D5 - S2 - Mazza


Sism. IV-17: 22_SR – Prova sismica a rifrazione onde SH – Tiro D6 – S1 - Mazza


Sism. IV-18: 22_SR – Prova sismica a rifrazione onde SH – Tiro D6 – S2 - Mazza


Sism. IV-19: 22_SR - Prova sismica a rifrazione onde SH - Tiro B - S1 - Mazza

Sism. IV-20: 22_SR - Prova sismica a rifrazione onde SH - Tiro B - S2 - Mazza

Sism. IV-21: 22_SR – Prova sismica a rifrazione onde SH – Tiro E2 – S1 - Mazza

Sism. IV-22: 22_SR - Prova sismica a rifrazione onde SH - Tiro E2 - S1- Mazza

Tab. IV-1: Stesa sismica 22_SR ONDE SH - Schema dettagliato

GEOFONI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
DISTANZA PROGRESSIVA [m]	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80	84	88	92
DISTANZA PARZIALI [m]	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
QUOTA [m]	70.6	70.7	70.9	71.0	71.1	71.2	71.3	71.5	71.6	71.7	71.8	71.9	72.1	72.2	72.3	72.4	72.6	72.7	72.8	72.9	73.0	73.2	73.3	73.4

Tab. IV-2: Stesa sismica 22_SR ONDE SH - Punti energizzazione (SCOPPIO)

	E1	Α	D1	D2	D3	С	D4	D5	D6	В	E2
	ESTERNO SX	ESTREMO SX	INTERMEDIO SX	INTERMEDIO SX	INTERMEDIO SX	CENTRALE	INTERMEDIO DX	INTERMEDIO DX	INTERMEDIO DX	ESTREMO SX	ESTERNO DX
POSIZIONE DAL GEOFONO 1 [m]	-20.00	-2.00	10.00	22.00	34.00	46.00	58.00	70.00	82.00	94.00	112.00
QUOTA [m]	70.0	70.5	70.9	71.3	71.6	72.0	72.4	72.7	73.1	73.5	74.0

Tab. IV-3: Stesa sismica 22_SR ONDE SH- Tabella scoppi - primi arrivi

GEOFONO	DISTANZA [m]	SCOPPIO E1 PRIMO ARRIVO [ms]	SCOPPIO A PRIMO ARRIVO [ms]	PRIMO	SCOPPIO D2 PRIMO ARRIVO [ms]	PRIMO	SCOPPIO C PRIMO ARRIVO [ms]	PRIMO	SCOPPIO D5 PRIMO ARRIVO [ms]	PRIMO	SCOPPIO B PRIMO ARRIVO [ms]	SCOPPIO E2 PRIMO ARRIVO [ms]
1	0	57	20	49	59	68	84	93	99	109	120	120
2	4	61	41	40	59	68	83	92	101	107	118	118
3	8	62	49	11	58	66	80	89	98	107	118	122
4	12	64	55	10	52	66	78	87	96	105	115	120
5	16	68	59	41	41	65	80	86	97	107	113	121
6	20	72	59	51	9	62	77	85	97	105	114	122
7	24	73	62	58	-1000	57	74	86	97	104	113	119
8	28	76	66	61	43	43	74	84	95	105	111	121
9	32	82	69	62	55	17	73	82	93	103	114	120
10	36	86	72	67	63	16	63	81	95	103	112	122
11	40	89	74	68	66	47	34	80	91	101	112	120
12	44	93	78	75	73	61	11	74	92	100	110	121
13	48	94	83	78	77	74	14	58	88	99	109	120
14	52	97	87	80	81	81	43	46	87	99	109	120
15	56	105	89	85	82	88	61	16	78	95	105	118
16	60	104	92	90	87	90	82	15	62	93	105	-1000
17	64	111	96	93	90	91	86	41	45	88	100	110
18	68	115	99	96	95	95	90	63	11	-1000	-1000	110
19	72	115	101	98	99	99	96	76	11	62	98	108
20	76	118	101	99	102	101	95	84	45	45	92	107
21	80	119	105	103	104	101	99	91	62	11	79	105
22	84	124	109	106	105	105	101	94	86	16	61	100
23	88	125	111	109	107	109	105	96	93	44	43	95
24	92	130	115	112	113	112	107	101	93	61	16	89

Tab. IV-4:Stesa sismica 22_SR ONDE SH – Sezione sismostratigrafica - Rifrattori spessori e velocità

		QUOTA PROFILO	VELOCITA'	QUOTA	VELOCITA'	QUOTA	VELOCITA'
GEOFONI	DISTANZA	TOPOGRAFICO	STRATO 1	STRATO 1	STRATO 2	STRATO 2	STRATO 3
STAZIONE	[m]	[m]	[m/s]	[m]	[m/s]	[m]	[m/s]
1	0	70.61	182	70.60	490	60.58	1233
1.5	2	70.67	181	70.60	490	60.72	1242
2	4	70.73	180	70.53	490	60.87	1253
2.5	6	70.79	179	70.39	490	61.01	1266
3	8	70.85	177	70.22	491	61.13	1281
3.5	10	70.91	175	70.05	490	61.23	1298
4	12	70.97	173	69.87	488	61.30	1319
4.5	14	71.03	172	69.69	486	61.35	1342
5	16	71.09	171	69.51	482	61.37	1368
5.5	18	71.15	171	69.32	482	61.37	1399
6	20	71.21	171	69.13	484	61.36	1435
6.5	22	71.27	169	68.95	485	61.32	1475
7	24	71.33	168	68.86	487	61.26	1523
7.5	26	71.39	169	68.83	488	61.17	1578
8	28	71.45	170	68.87	489	61.05	1638
8.5	30	71.52	172	68.91	490	60.89	1705
9	32	71.58	173	68.96	493	60.71	1780
9.5	34	71.64	173	69.00	497	60.49	1862
10	36	71.70	173	69.05	502	60.24	1948
10.5	38	71.76	172	69.11	506	59.96	2034
11	40	71.82	170	69.17	506	59.66	2118
11.5	42	71.88	170	69.23	506	59.34	2198
12	44	71.94	171	69.29	506	59.00	2276
12.5	46	72.00	169	69.35	506	58.66	2356
13	48	72.06	167	69.41	506	58.34	2437
13.5	50	72.12	165	69.47	506	58.03	2517
14	52	72.18	164	69.53	506	57.74	2589
14.5	54	72.24	163	69.59	506	57.49	2647
15	56	72.30	162	69.65	506	57.26	2696
15.5	58	72.36	162	69.71	506	57.06	2738
16	60	72.42	163	69.77	506	56.88	2772
16.5	62	72.49	162	69.83	506	56.73	2794
17	64	72.55	162	69.90	506	56.61	2804
17.5	66	72.61	162	69.96	506	56.51	2800
18	68	72.67	162	70.02	506	56.42	2784
18.5	70	72.73	161	70.08	506	56.36	2761
19	72	72.79	160	70.14	506	56.32	2732
19.5	74	72.85	158	70.20	506	56.30	2695
20	76	72.91	157	70.26	506	56.30	2651
20.5	78	72.97	156	70.32	506	56.31	2604
21	80	73.03	155	70.38	506	56.34	2557
21.5	82	73.09	154	70.44	506	56.38	2511
22	84	73.15	154	70.50	506	56.43	2466
22.5	86	73.21	154	70.56	506	56.49	2419
23	88	73.27	153	70.62	506	56.56	2369
23.5	90	73.33	153	70.68	506	56.62	2317
24	92	73.39	153	70.74	506	56.69	2266

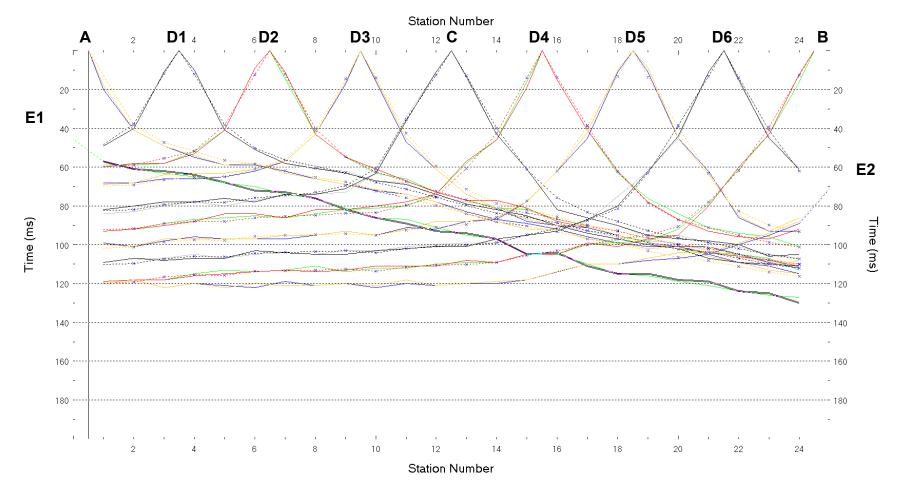


Fig. IV-2:Stesa sismica 22_SR ONDE SH – Dromocrone – Scala 1:500

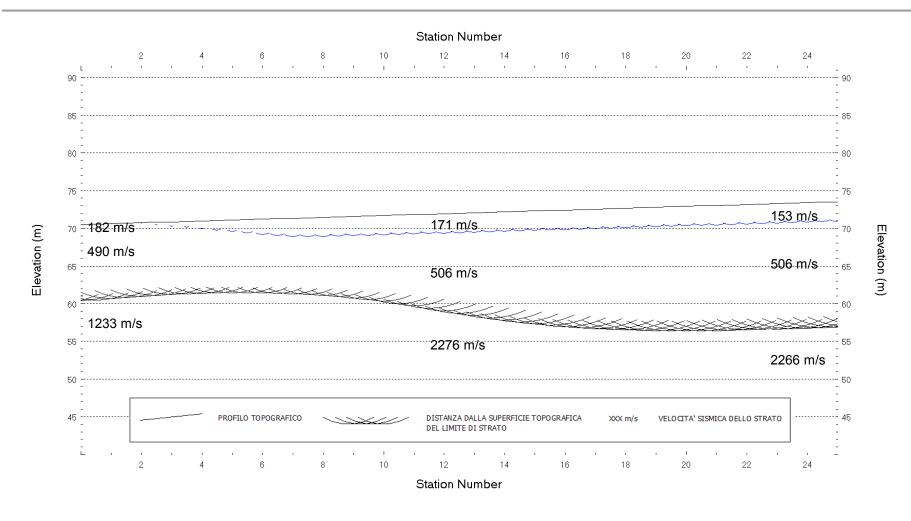


Fig. IV-3: Stesa sismica 22_SR ONDE SH – Sezione Sismostratigrafica – Scala 1:500

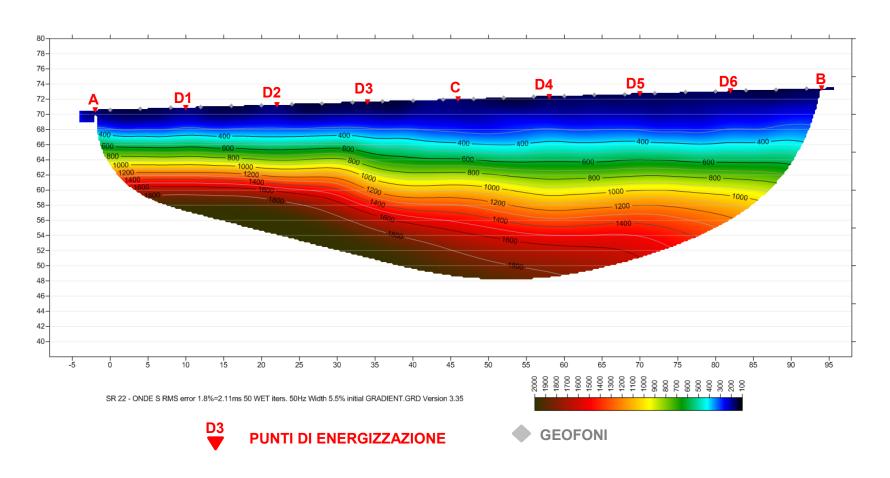


Fig. IV-4: Stesa sismica 22_SR ONDE SH – Tomografia sismica - Scala 1:500

V. ALLEGATO GRAFICO: STESA SISMICA 34_SR ONDE P – SISMOGRAMMI - TABULATI PRIMI ARRIVI – TABULATI PROFONDITA' E VELOCITA' RIFRATTORI – DROMOCRONE — SEZIONI SISMOSTRATIGRAFICHE – TOMOGRAFIE

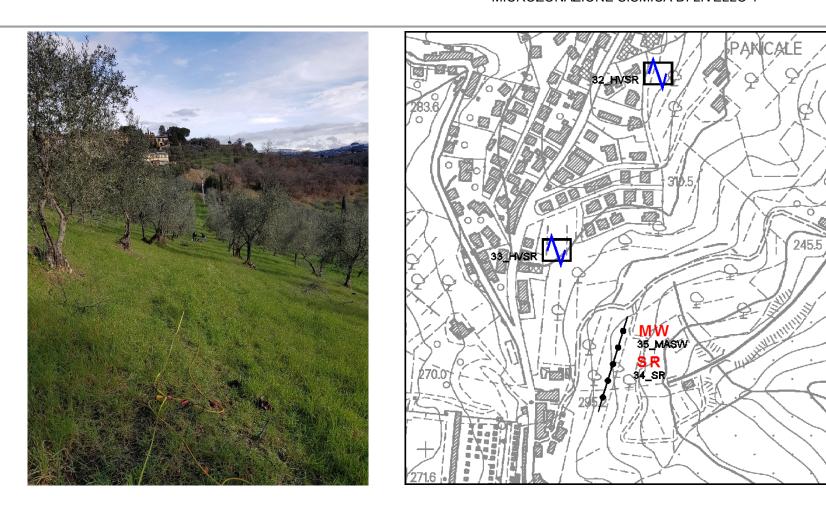
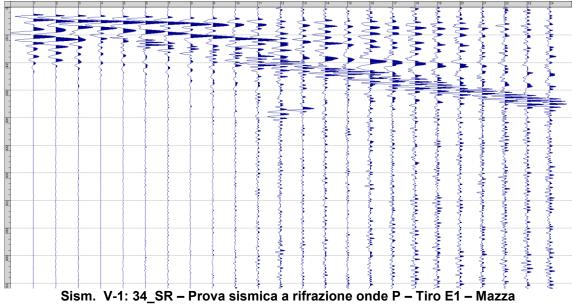
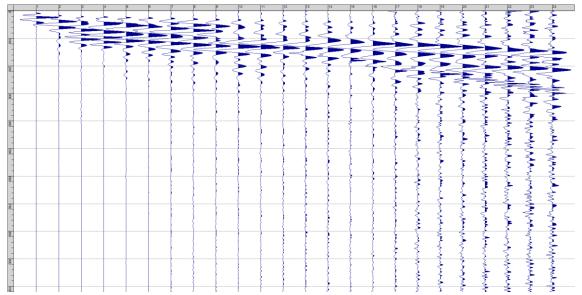
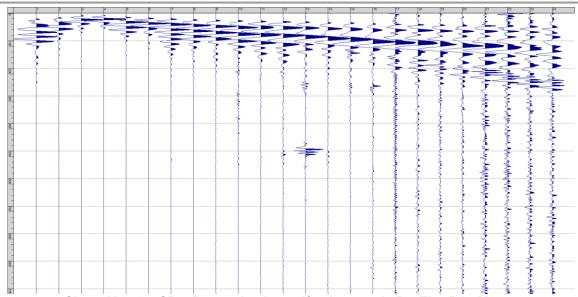
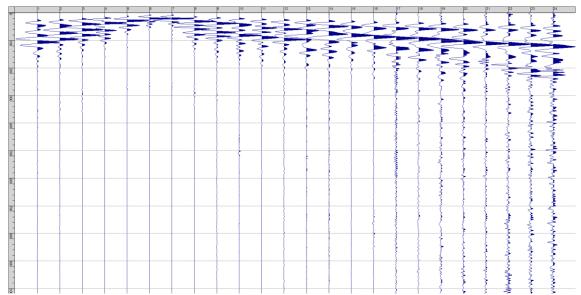
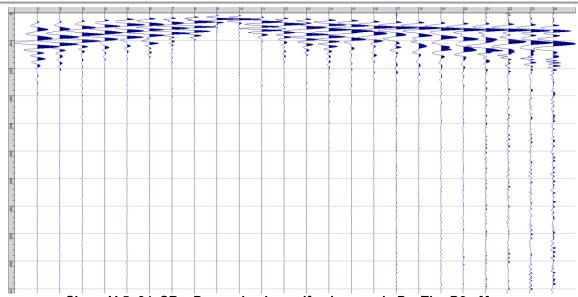
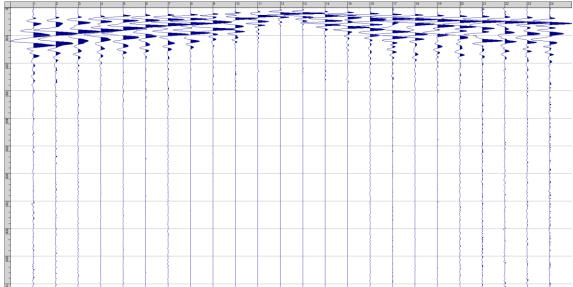
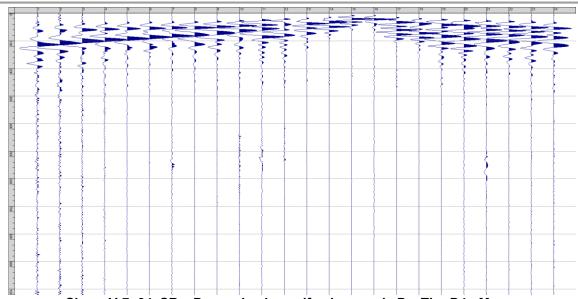





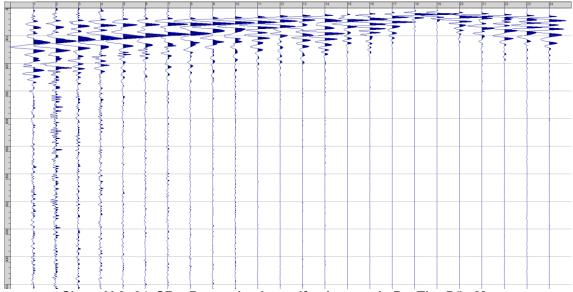
Fig. V-1: Ripresa fotografica ed inquadramento scala 1:5000

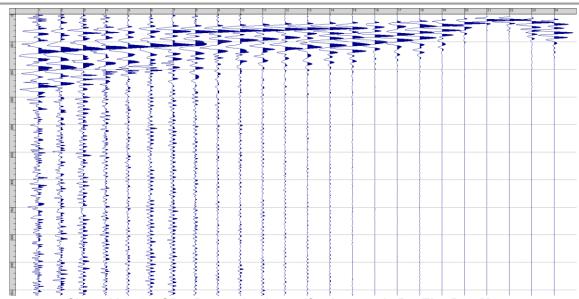


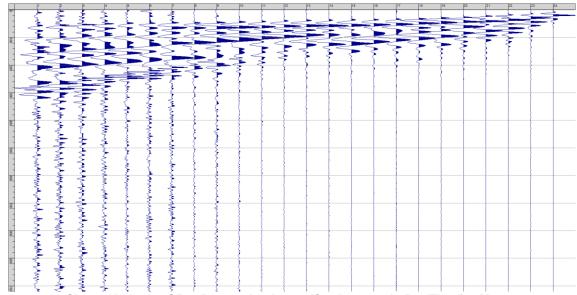

Sism. V-2: 34_SR - Prova sismica a rifrazione onde P - Tiro A - Mazza

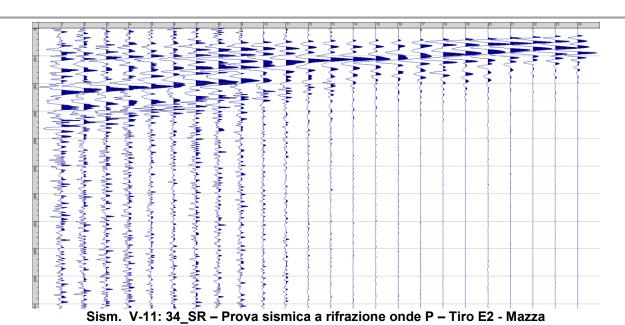

Sism. V-3: 34_SR – Prova sismica a rifrazione onde P – Tiro D1 - Mazza


Sism. V-4: 34_SR - Prova sismica a rifrazione onde P - Tiro D2 - Mazza


Sism. V-5: 34_SR – Prova sismica a rifrazione onde P – Tiro D3 - Mazza


Sism. V-6: 34_SR - Prova sismica a rifrazione onde P - Tiro C - Mazza


Sism. V-7: 34_SR – Prova sismica a rifrazione onde P – Tiro D4 - Mazza


Sism. V-8: 34_SR - Prova sismica a rifrazione onde P - Tiro D5 - Mazza

Sism. V-9: 34_SR – Prova sismica a rifrazione onde P – Tiro D6 - Mazza

Sism. V-10: 34_SR - Prova sismica a rifrazione onde P - Tiro B - Mazza

ENKI s.r.l. – info@enki.it - Firenze

Tab. V-1: Stesa sismica 34_SR ONDE P - Schema dettagliato

GEOFONI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
DISTANZA PROGRESSIVA [m]	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80	84	88	92
DISTANZA PARZIALI [m]	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
QUOTA [m]	218.3	218.0	217.7	217.3	217.0	217.3	217.6	217.9	218.1	218.4	218.7	219.0	219.4	219.8	220.3	220.7	221.1	221.5	221.9	222.3	222.8	223.2	223.6	224.0

Tab. V-2: Stesa sismica 34_SR ONDE P - Punti energizzazione (SCOPPIO)

	E1	Α	D1	D2	D3	С	D4	D5	D6	В	E2
	ESTERNO SX	ESTREMO SX	INTERMEDIO SX	INTERMEDIO SX	INTERMEDIO SX	CENTRALE	INTERMEDIO DX	INTERMEDIO DX	INTERMEDIO DX	ESTREMO SX	ESTERNO DX
POSIZIONE DAL GEOFONO 1 [m]	-20.00	-1.99	9.99	22.00	34.00	45.99	57.99	69.99	81.99	94.00	112.00
QUOTA [m]	220.0	218.5	217.5	217.4	218.3	219.2	220.5	221.7	223.0	224.0	224.0

Tab. V-3: Stesa sismica 34_SR ONDE P - Tabella scoppi - primi arrivi

GEOFONO	DISTANZA [m]	SCOPPIO E1 PRIMO ARRIVO [ms]	PRIMO	PRIMO	PRIMO	SCOPPIO D3 PRIMO ARRIVO [ms]	PRIMO	PRIMO	SCOPPIO D5 PRIMO ARRIVO [ms]	SCOPPIO D6 PRIMO ARRIVO [ms]	SCOPPIO B PRIMO ARRIVO [ms]	SCOPPIO E2 PRIMO ARRIVO [ms]
1	0	23	6	18	24	30	35	39	44	48	54	54
2	4	26	15	14	22	27	33	38	42	48	52	54
3	8	27	18	8	19	24	30	35	41	45	51	52
4	12	27	19	7	15	23	28	33	38	44	48	50
5	16	30	21	12	9	18	24	30	36	41	46	50
6	20	31	22	15	7	17	22	30	35	40	45	50
7	24	33	24	18	7	15	22	28	34	39	44	49
8	28	35	27	20	12	12	21	27	33	38	44	49
9	32	35	29	22	15	8	18	26	33	38	42	48
10	36	37	30	24	17	8	15	24	30	35	41	46
11	40	40	31	26	20	12	13	20	27	34	39	45
12	44	40	33	28	22	16	9	17	25	31	36	43
13	48	42	34	28	23	19	8	15	23	29	34	41
14	52	43	36	32	26	22	11	12	22	28	33	41
15	56	45	36	32	27	24	14	7	19	27	33	40
16	60	48	39	36	30	27	18	7	17	26	32	40
17	64	48	42	37	34	30	20	13	14	23	30	38
18	68	50	41	38	34	31	23	16	9	21	29	37
19	72	51	44	40	36	31	25	20	9	17	26	36
20	76	54	47	41	36	35	27	22	12	13	23	34
21	80	54	47	43	38	36	28	25	17	9	19	32
22	84	56	48	43	41	37	30	26	20	7	15	28
23	88	57	48	45	43	39	32	29	24	11	12	25
24	92	56	49	45	45	41	35	31	27	15	6	23

Tab. V-4:Stesa sismica 34_SR ONDE P – Sezione sismostratigrafica - Rifrattori spessori e velocità

05050111	DISTANTA	QUOTA PROFILO	VELOCITA'	QUOTA	VELOCITA'	QUOTA	VELOCITA'
GEOFONI	DISTANZA	TOPOGRAFICO	STRATO 1	STRATO 1	STRATO 2	STRATO 2	STRATO 3
STAZIONE	[m]	[m]	[m/s]	[m]	[m/s]	[m]	[m/s]
1	0	218.33	558	215.19	1862	209.13	2555
1.5	2	218.17	558	215.04	1863	209.02	2553
2	4	218.00	559	214.88	1865	208.91	2552
2.5	6	217.84	559	214.72	1867	208.80	2550
3	8	217.67	559	214.57	1871	208.69	2549
3.5	10	217.50	561	214.40	1876	208.57	2550
4	12	217.33	562	214.24	1880	208.45	2550
4.5	14	217.17	563	214.08	1883	208.34	2549
5	16	217.00	564	213.91	1884	208.23	2550
5.5	18	217.15	566	214.06	1883	208.13	2551
6	20	217.29	568	214.21	1880	208.03	2554
6.5	22	217.43	569	214.35	1878	207.94	2561
7	24	217.57	571	214.49	1877	207.86	2571
7.5	26	217.72	572	214.63	1874	207.79	2588
8	28	217.86	574	214.78	1866	207.73	2614
8.5	30	218.00	576	214.92	1856	207.69	2643
9	32	218.14	578	215.06	1841	207.66	2674
9.5	34	218.29	579	215.21	1824	207.64	2706
10	36	218.43	580	215.35	1804	207.64	2741
10.5	38	218.57	580	215.49	1786	207.65	2774
11	40	218.71	580	215.63	1773	207.65	2806
11.5	42	218.86	580	215.77	1762	207.66	2837
12	44	219.00	579	215.91	1749	207.67	2868
12.5	46	219.21	577	216.11	1739	207.68	2899
13	48	219.42	575	216.31	1734	207.70	2931
13.5	50	219.63	571	216.49	1736	207.72	2962
14	52	219.83	567	216.67	1744	207.75	2990
14.5	54	220.04	563	216.85	1757	207.79	3016
15	56	220.25	559	217.03	1774	207.84	3040
15.5	58	220.46	555	217.20	1794	207.89	3059
16	60	220.67	551	217.37	1812	207.95	3075
16.5	62	220.88	548	217.53	1827	208.02	3090
17	64	221.08	546	217.69	1840	208.10	3107
17.5	66	221.29	546	217.85	1853	208.18	3133
18	68	221.50	546	218.01	1857	208.27	3168
18.5	70	221.71	549	218.18	1859	208.35	3201
19	72	221.92	552	218.35	1854	208.44	3232
19.5	74	222.13	555	218.53	1842	208.53	3262
20	76	222.33	559	218.71	1824	208.61	3292
20.5	78	222.54	565	218.90	1799	208.67	3320
21	80	222.75	571	219.09	1770	208.73	3349
21.5	82	222.96	577	219.30	1739	208.76	3377
22	84	223.17	584	219.51	1712	208.79	3406
22.5	86	223.38	588	219.72	1688	208.81	3433
23	88	223.58	593	219.93	1667	208.84	3460
23.5	90	223.79	597	220.15	1650	208.86	3486
24	92	224.00	600	220.36	1633	208.88	3512
	•		•				

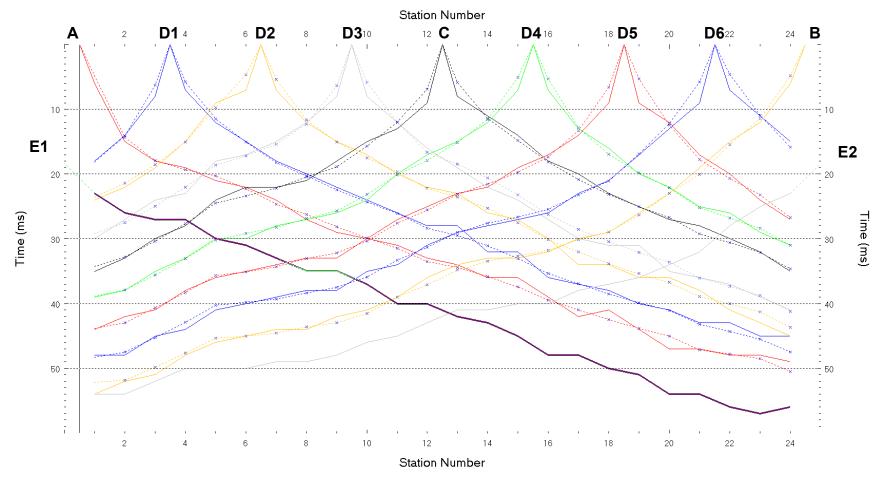


Fig. V-2: Stesa sismica 34_SR ONDE P – Dromocrone – Scala 1:500

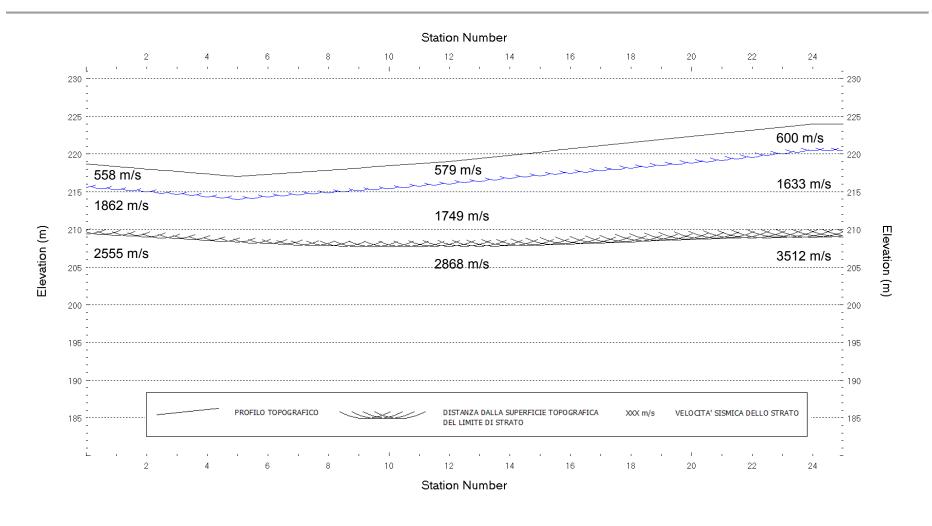
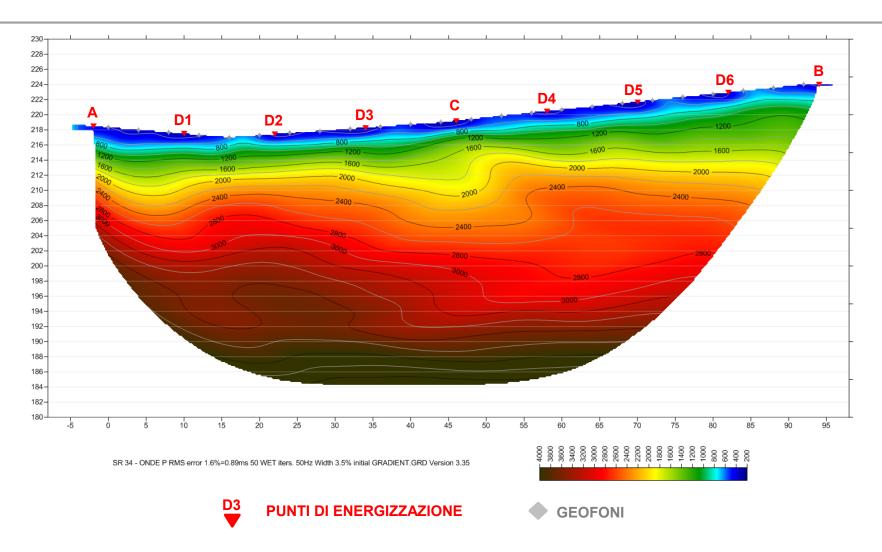
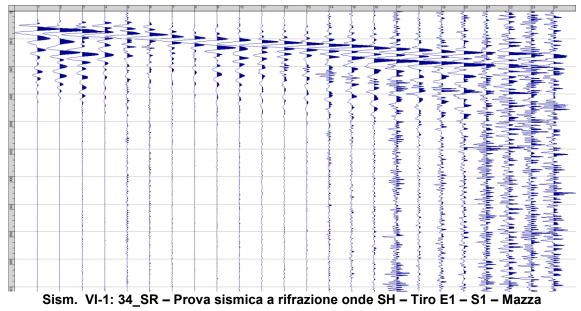
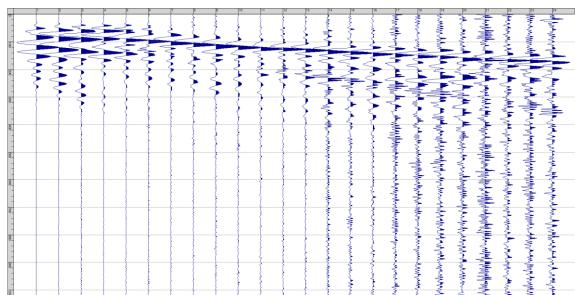


Fig. V-3: Stesa sismica 34_SR ONDE P - Sezione Sismostratigrafica - Scala 1:500


Fig. V-4: Stesa sismica 34_SR ONDE P – Tomografia sismica - Scala 1:500

VI. ALLEGATO GRAFICO: STESA SISMICA 34_SR ONDE SH – SISMOGRAMMI
- TABULATI PRIMI ARRIVI – TABULATI PROFONDITA' E VELOCITA'
RIFRATTORI – DROMOCRONE — SEZIONI SISMOSTRATIGRAFICHE –
TOMOGRAFIE

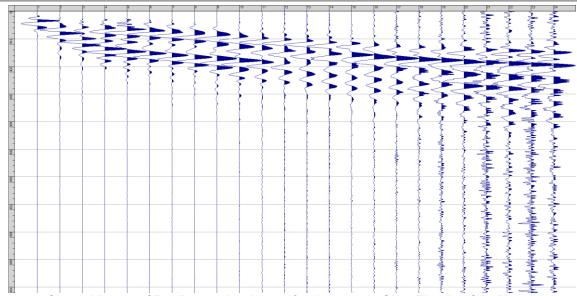
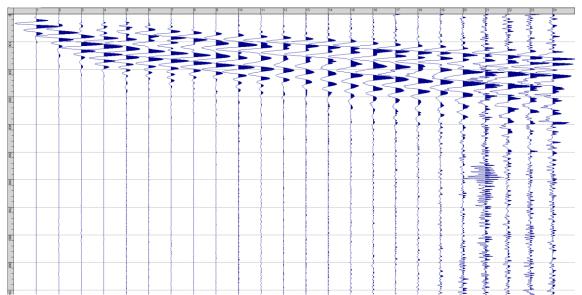
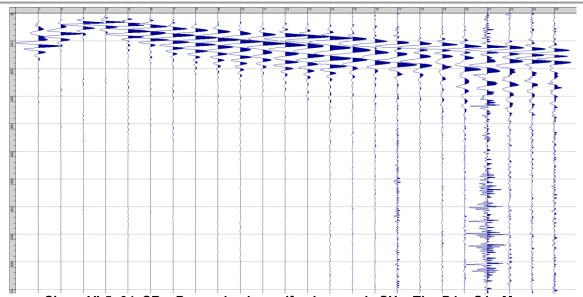
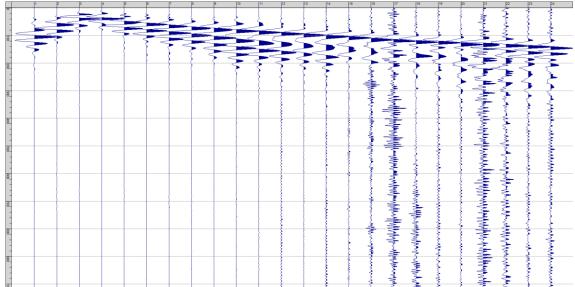
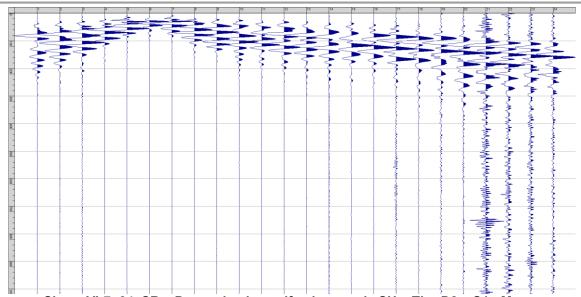


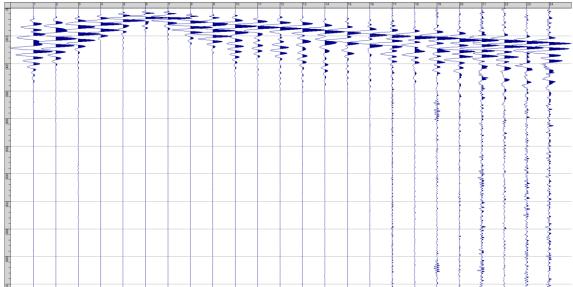
Fig. VI-1: Ripresa fotografica ed inquadramento scala 1:5000

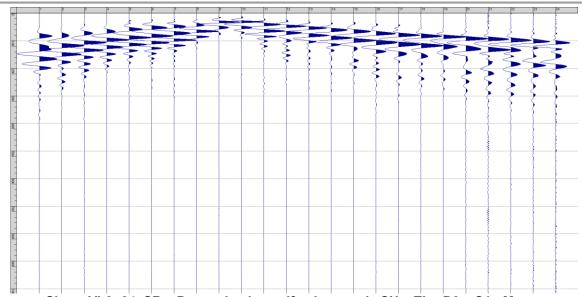


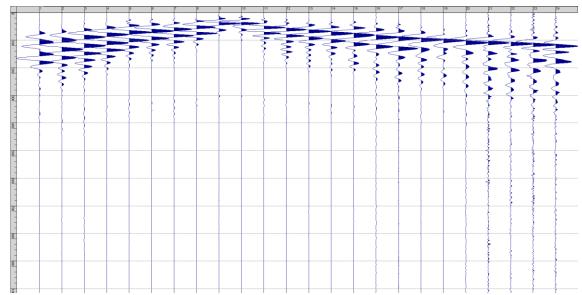

Sism. VI-2: 34_SR – Prova sismica a rifrazione onde SH – Tiro E1 – S2 - Mazza

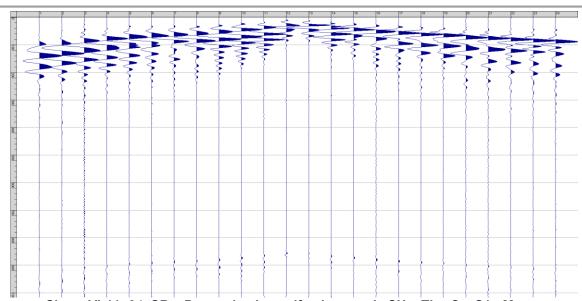

Sism. VI-3: 34_SR - Prova sismica a rifrazione onde SH - Tiro A - S1 - Mazza

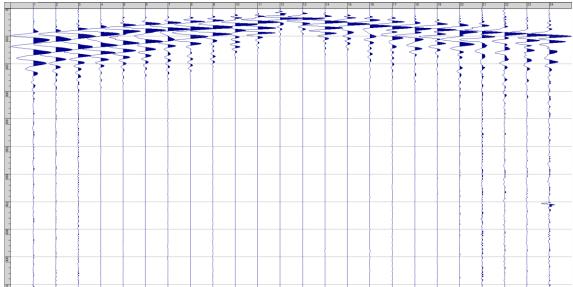

Sism. VI-4: 34_SR - Prova sismica a rifrazione onde SH - Tiro A - S2 - Mazza

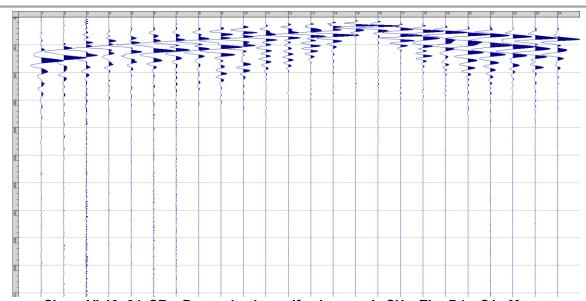

Sism. VI-5: 34_SR - Prova sismica a rifrazione onde SH - Tiro D1 - S1 - Mazza

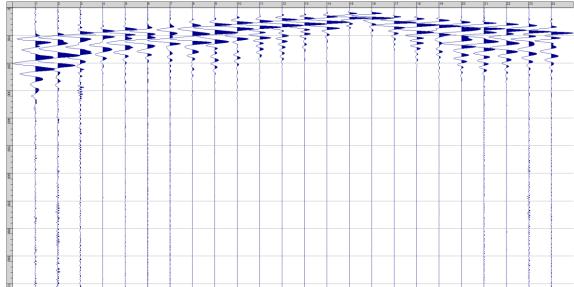

Sism. VI-6: 34_SR - Prova sismica a rifrazione onde SH - Tiro D1 - S2 - Mazza

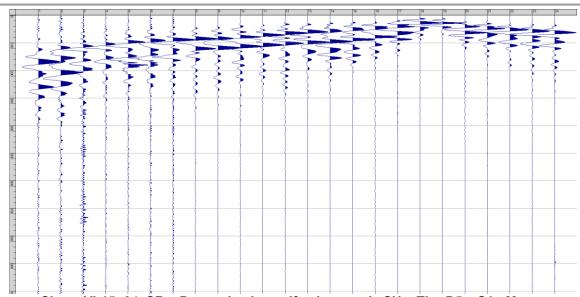

Sism. VI-7: 34_SR - Prova sismica a rifrazione onde SH - Tiro D2 - S1 - Mazza

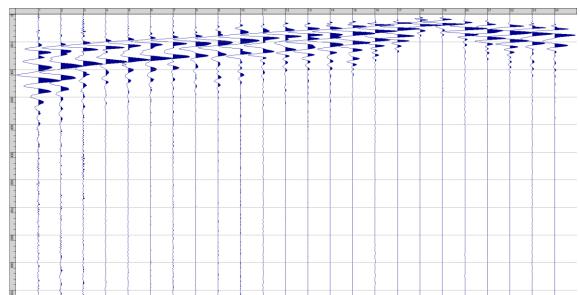

Sism. VI-8: 34_SR - Prova sismica a rifrazione onde SH - Tiro D2 - S2 - Mazza

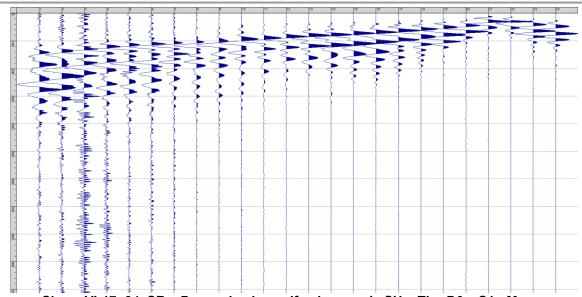

Sism. VI-9: 34_SR - Prova sismica a rifrazione onde SH - Tiro D3 - S1 - Mazza

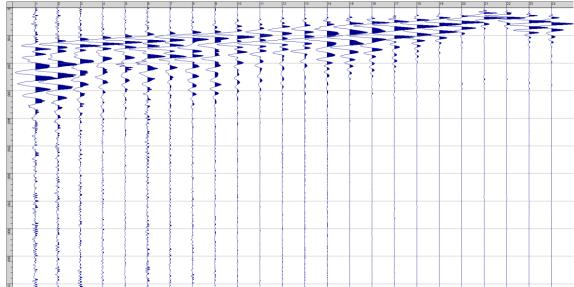

Sism. VI-10: 34_SR – Prova sismica a rifrazione onde SH – Tiro D3 – S2 - Mazza

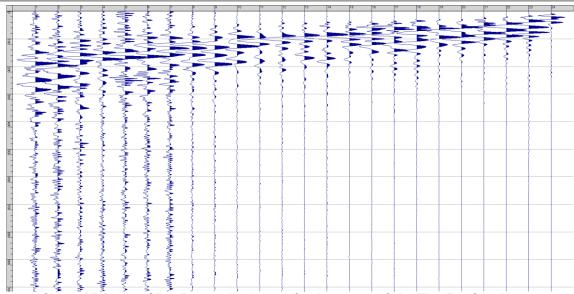

Sism. VI-11: 34_SR - Prova sismica a rifrazione onde SH - Tiro C - S1 - Mazza

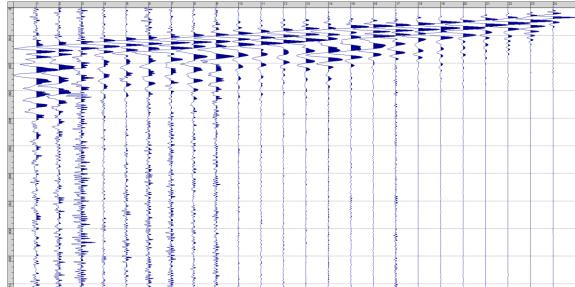

Sism. VI-12: 34_SR - Prova sismica a rifrazione onde SH - Tiro C - S2 - Mazza

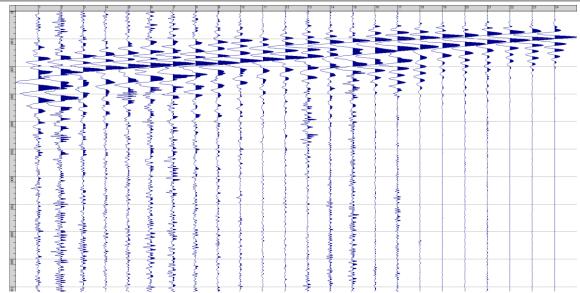

Sism. VI-13: 34_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S1 - Mazza

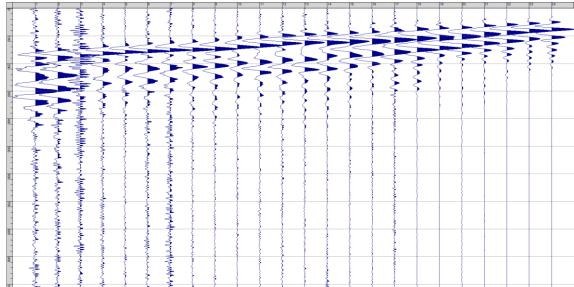

Sism. VI-14: 34_SR – Prova sismica a rifrazione onde SH – Tiro D4 – S2 - Mazza


Sism. VI-15: 34_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S1 - Mazza


Sism. VI-16: 34_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S2 - Mazza


Sism. VI-17: 34_SR – Prova sismica a rifrazione onde SH – Tiro D6 – S1 - Mazza


Sism. VI-18: 34_SR - Prova sismica a rifrazione onde SH - Tiro D6 - S2 - Mazza


Sism. VI-19: 34_SR - Prova sismica a rifrazione onde SH - Tiro B - S1 - Mazza

Sism. VI-20: 34_SR - Prova sismica a rifrazione onde SH - Tiro B - S2 - Mazza

Sism. VI-21: 34_SR - Prova sismica a rifrazione onde SH - Tiro E2 - S1 - Mazza

Sism. VI-22: 34_SR - Prova sismica a rifrazione onde SH - Tiro E2 - S1- Mazza

Tab. VI-1: Stesa sismica 34_SR ONDE SH - Schema dettagliato

GEOFONI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
DISTANZA PROGRESSIVA [m]	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80	84	88	92
DISTANZA PARZIALI [m]	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
QUOTA [m]	218.3	218.0	217.7	217.3	217.0	217.3	217.6	217.9	218.1	218.4	218.7	219.0	219.4	219.8	220.3	220.7	221.1	221.5	221.9	222.3	222.8	223.2	223.6	224.0

Tab. VI-2: Stesa sismica 34_SR ONDE SH - Punti energizzazione (SCOPPIO)

	E1	Α	D1	D2	D3	С	D4	D5	D6	В	E2
	ESTERNO SX	ESTREMO SX	INTERMEDIO SX	INTERMEDIO SX	INTERMEDIO SX	CENTRALE	INTERMEDIO DX	INTERMEDIO DX	INTERMEDIO DX	ESTREMO SX	ESTERNO DX
POSIZIONE DAL GEOFONO 1 [m]	-20.00	-1.99	9.99	22.00	34.00	45.99	57.99	69.99	81.99	94.00	112.00
QUOTA [m]	220.0	218.5	217.5	217.4	218.3	219.2	220.5	221.7	223.0	224.0	224.0

Tab. VI-3: Stesa sismica 34_SR ONDE SH- Tabella scoppi - primi arrivi

GEOFONO	DISTANZA [m]	SCOPPIO E1 PRIMO ARRIVO [ms]	PRIMO	SCOPPIO D1 PRIMO ARRIVO [ms]	PRIMO	PRIMO	SCOPPIO C PRIMO ARRIVO [ms]	PRIMO	SCOPPIO D5 PRIMO ARRIVO [ms]	SCOPPIO D6 PRIMO ARRIVO [ms]	SCOPPIO B PRIMO ARRIVO [ms]	SCOPPIO E2 PRIMO ARRIVO [ms]
1	0	55	19	39	51	61	78	94	109	121	123	148
2	4	59	31	33	-1000	58	72	89	103	116	121	145
3	8	61	38	19	40	52	66	85	97	109	118	141
4	12	67	40	18	32	45	58	79	90	105	113	135
5	16	71	45	26	21	39	49	71	82	99	107	128
6	20	75	52	32	13	32	45	65	76	94	103	124
7	24	80	58	40	13	29	40	60	72	91	100	122
8	28	87	61	43	22	26	39	57	72	84	96	114
9	32	90	67	47	30	17	33	53	68	81	90	104
10	36	92	71	54	35	18	28	49	62	75	86	99
11	40	96	78	59	39	26	23	45	55	69	79	94
12	44	102	82	63	42	32	13	39	48	64	75	89
13	48	105	86	66	50	37	15	31	41	60	70	87
14	52	110	91	73	55	44	24	26	41	56	66	86
15	56	111	94	77	59	48	29	17	36	52	61	79
16	60	117	102	84	64	55	36	17	31	48	54	74
17	64	123	106	91	67	60	41	27	23	43	52	72
18	68	122	111	94	74	64	-1000	35	15	39	49	68
19	72	126	113	97	82	69	49	38	16	31	46	64
20	76	131	121	102	85	74	54	44	24	26	39	63
21	80	134	123	105	92	77	57	48	32	14	34	58
22	84	137	126	109	93	78	63	52	38	16	28	55
23	88	141	128	112	96	85	67	55	43	24	20	49
24	92	145	127	115	100	86	71	61	47	31	12	42

Tab. VI-4:Stesa sismica 34_SR ONDE SH – Sezione sismostratigrafica - Rifrattori spessori e velocità

CEOFONI	DICTANIZA	QUOTA PROFILO	VELOCITA'	QUOTA	VELOCITA'	QUOTA	VELOCITA'
GEOFONI	DISTANZA	TOPOGRAFICO	STRATO 1	STRATO 1	STRATO 2	STRATO 2	STRATO 3
STAZIONE	[m]	[m]	[m/s]	[m]	[m/s]	[m]	[m/s]
1	0	218.33	265	215.49	726	208.17	978
1.5	2	218.17	266	215.33	725	208.12	973
2	4	218.00	268	215.17	725	208.06	968
2.5	6	217.84	269	215.01	725	208.02	963
3	8	217.67	270	214.85	725	207.97	957
3.5	10	217.50	276	214.68	726	207.94	951
4	12	217.33	281	214.51	727	207.91	944
4.5	14	217.17	289	214.35	728	207.90	938
5	16	217.00	297	214.19	728	207.92	932
5.5	18	217.15	308	214.33	728	207.96	926
6	20	217.29	318	214.48	728	208.02	921
6.5	22	217.43	327	214.62	728	208.11	915
7	24	217.57	336	214.76	728	208.23	911
7.5	26	217.72	344	214.90	728	208.39	907
8	28	217.86	351	215.05	728	208.59	904
8.5	30	218.00	356	215.19	728	208.81	903
9	32	218.14	360	215.33	728	209.07	902
9.5	34	218.29	352	215.47	728	209.34	902
10	36	218.43	345	215.62	728	209.64	902
10.5	38	218.57	343	215.76	728	209.98	902
11	40	218.71	341	215.90	728	210.34	903
11.5	42	218.86	330	216.04	728	210.71	903
12	44	219.00	319	216.19	728	211.10	904
12.5	46	219.21	309	216.40	728	211.50	905
13	48	219.42	299	216.61	728	211.90	906
13.5	50	219.63	297	216.81	728	212.30	908
14	52	219.83	295	217.02	728	212.70	910
14.5	54	220.04	298	217.23	728	213.09	912
15	56	220.25	301	217.44	728	213.46	914
15.5	58	220.46	296	217.65	728	213.80	916
16	60	220.67	291	217.86	728	214.12	919
16.5	62	220.88	290	218.06	728	214.41	922
17	64	221.08	289	218.27	728	214.67	926
17.5	66	221.29	290	218.48	728	214.88	931
18	68	221.50	291	218.69	728	215.06	937
18.5	70	221.71	296	218.90	728	215.21	944
19	72	221.92	301	219.11	728	215.33	951
19.5	74	222.13	303	219.31	728	215.44	958
20	76	222.33	304	219.52	728	215.52	965
20.5	78	222.54	314	219.73	728	215.59	972
21	80	222.75	325	219.94	728	215.62	979
21.5	82	222.96	335	220.15	728	215.62	986
22	84	223.17	344	220.36	728	215.61	993
22.5	86	223.38	354	220.56	728	215.58	1000
23	88	223.58	363	220.77	728	215.54	1006
23.5	90	223.79	366	220.98	728	215.49	1013
24	92	224.00	370	221.19	728	215.44	1020

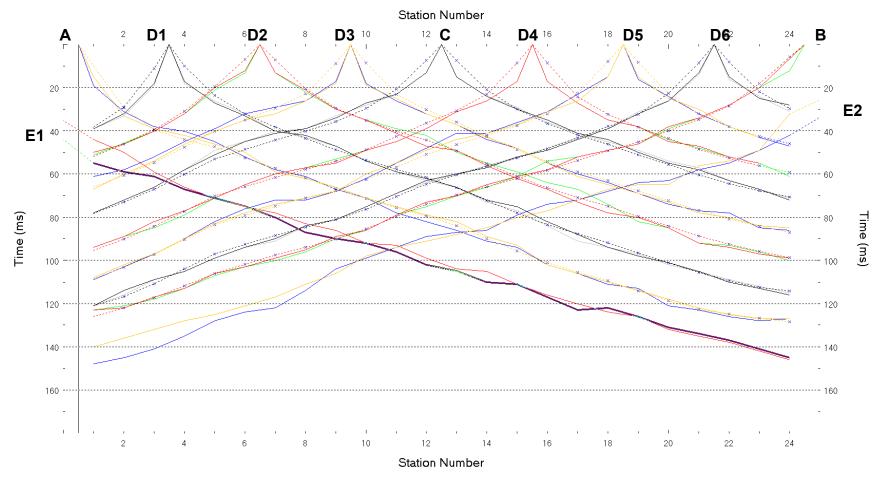


Fig. VI-2:Stesa sismica 34_SR ONDE SH – Dromocrone – Scala 1:500

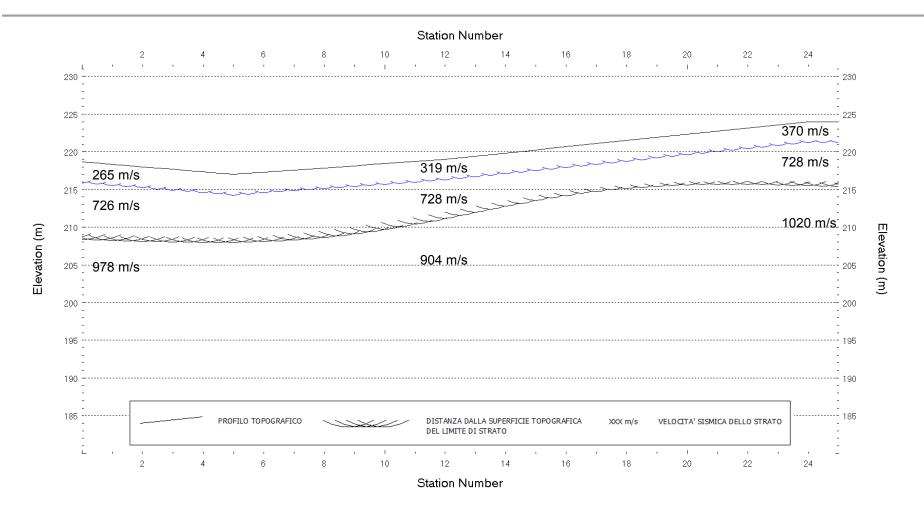
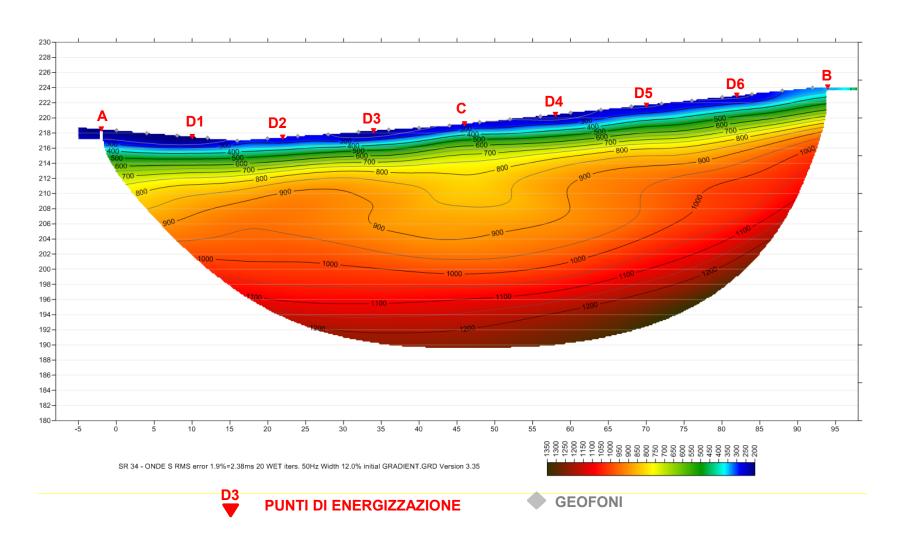
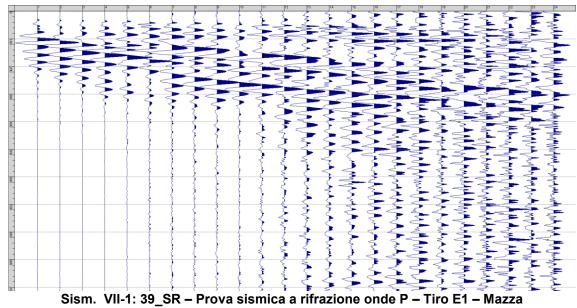
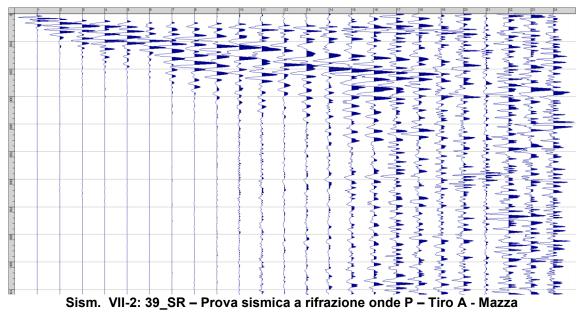
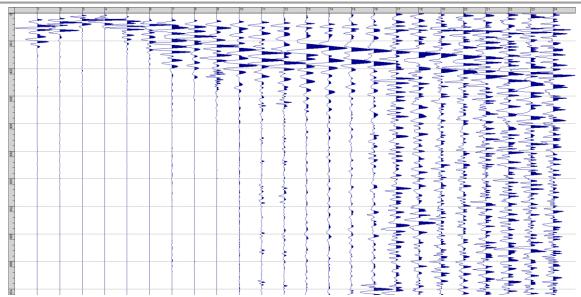
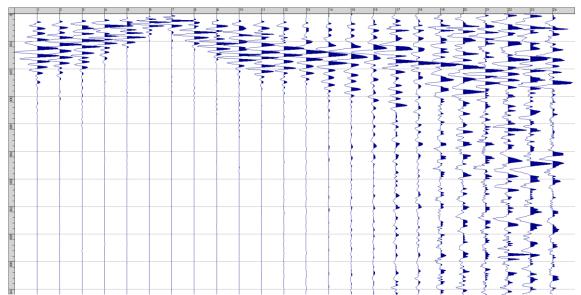


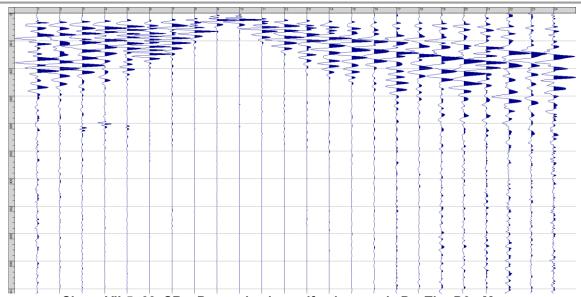
Fig. VI-3: Stesa sismica 34_SR ONDE SH – Sezione Sismostratigrafica – Scala 1:500

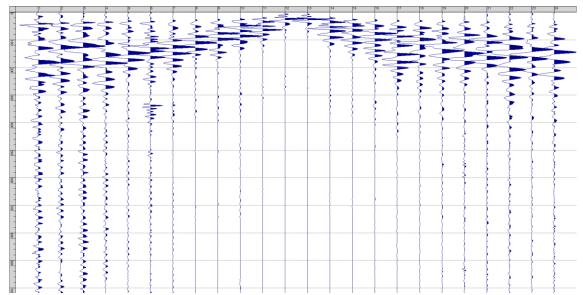



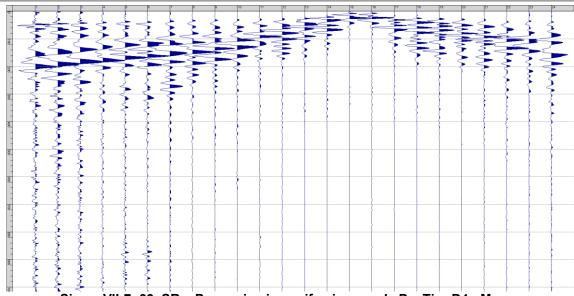

Fig. VI-4: Stesa sismica 34_SR ONDE SH – Tomografia sismica - Scala 1:500

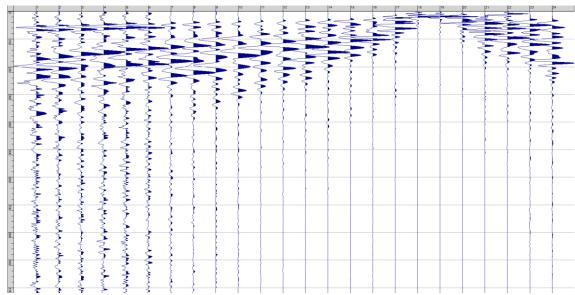

VII. ALLEGATO GRAFICO: STESA SISMICA 39_SR ONDE P – SISMOGRAMMI - TABULATI PRIMI ARRIVI – TABULATI PROFONDITA' E VELOCITA' RIFRATTORI – DROMOCRONE – SEZIONI SISMOSTRATIGRAFICHE – TOMOGRAFIE

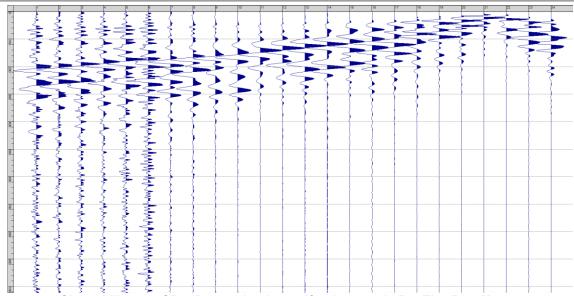

Fig. VII-1: Ripresa fotografica ed inquadramento scala 1:5000

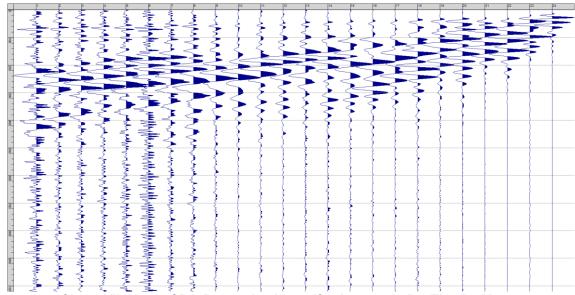


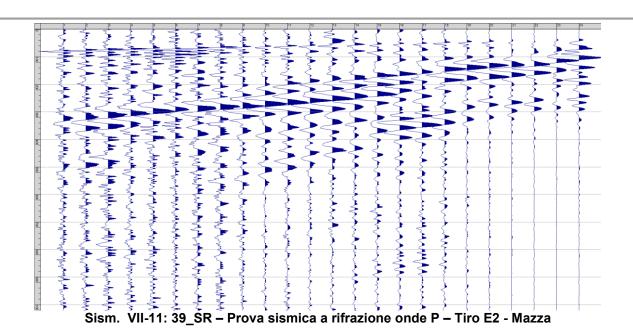

Sism. VII-3: 39_SR - Prova sismica a rifrazione onde P - Tiro D1 - Mazza


Sism. VII-4: 39_SR - Prova sismica a rifrazione onde P - Tiro D2 - Mazza


Sism. VII-5: 39_SR - Prova sismica a rifrazione onde P - Tiro D3 - Mazza


Sism. VII-6: 39_SR - Prova sismica a rifrazione onde P - Tiro C - Mazza


Sism. VII-7: 39_SR – Prova sismica a rifrazione onde P – Tiro D4 - Mazza


Sism. VII-8: 39_SR – Prova sismica a rifrazione onde P – Tiro D5 - Mazza

Sism. VII-9: 39_SR - Prova sismica a rifrazione onde P - Tiro D6 - Mazza

Sism. VII-10: 39_SR - Prova sismica a rifrazione onde P - Tiro B - Mazza

Tab. VII-1: Stesa sismica 39_SR ONDE P - Schema dettagliato

GEOFONI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
DISTANZA PROGRESSIVA [m]	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115
DISTANZA PARZIALI [m]	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
QUOTA [m]	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0

Tab. VII-2: Stesa sismica 39_SR ONDE P - Punti energizzazione (SCOPPIO)

	E1	Α	D1	D2	D3	С	D4	D5	D6	В	E2
<u> </u>	ESTERNO SX	ESTREMO SX	INTERMEDIO SX	INTERMEDIO SX	INTERMEDIO SX	CENTRALE	INTERMEDIO DX	INTERMEDIO DX	INTERMEDIO DX	ESTREMO SX	ESTERNO DX
POSIZIONE DAL GEOFONO 1 [m]	-25.00	-2.50	12.50	27.50	42.50	57.50	72.50	87.50	102.50	117.50	140.00
QUOTA [m]	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0

Tab. VII-3: Stesa sismica 39_SR ONDE P - Tabella scoppi - primi arrivi

GEOFONO	l Imi	SCOPPIO E1 PRIMO ARRIVO [ms]	SCOPPIO A PRIMO ARRIVO [ms]	PRIMO	PRIMO	SCOPPIO D3 PRIMO ARRIVO [ms]	PRIMO	PRIMO	PRIMO	SCOPPIO D6 PRIMO ARRIVO [ms]	SCOPPIO B PRIMO ARRIVO [ms]	SCOPPIO E2 PRIMO ARRIVO [ms]
1	0	26	6	19	26	31	38	43	48	54	60	72
2	5	28	16	16	24	29	36	41	47	53	58	70
3	10	30	21	5	22	27	34	40	44	52	57	68
4	15	32	23	5	19	24	32	36	42	50	54	67
5	20	33	23	10	15	21	29	34	39	48	51	65
6	25	38	29	18	7	22	29	34	39	47	50	63
7	30	39	29	22	7	19	27	32	37	45	51	62
8	35	39	30	23	18	16	25	31	35	44	48	60
9	40	41	32	24	19	5	23	29	33	42	48	59
10	45	44	34	26	22	5	21	27	32	40	46	57
11	50	47	37	29	24	16	18	26	31	39	45	56
12	55	48	39	32	27	20	5	24	29	37	44	53
13	60	51	40	34	30	23	5	22	27	37	42	52
14	65	52	44	36	32	25	18	17	26	35	41	49
15	70	54	45	38	32	27	23	5	19	33	38	48
16	75	55	47	41	36	29	25	5	14	31	34	46
17	80	58	47	43	37	31	27	13	9	29	33	45
18	85	60	50	43	37	32	28	14	3	20	31	42
19	90	62	52	45	39	33	29	22	3	16	29	40
20	95	62	54	47	41	36	32	26	9	13	28	39
21	100	64	54	48	41	37	33	28	15	8	26	38
22	105	65	55	51	44	40	37	33	19	9	27	38
23	110	66	56	52	45	43	39	33	25	19	17	34
24	115	68	57	54	47	45	42	36	29	28	11	33

Tab. VII-4:Stesa sismica 39_SR ONDE P - Sezione sismostratigrafica - Rifrattori spessori e velocità

05050111	510=111=1	QUOTA PROFILO	VELOCITA'	QUOTA	VELOCITA'	QUOTA	VELOCITA'
GEOFONI	DISTANZA	TOPOGRAFICO	STRATO 1	STRATO 1	STRATO 2	STRATO 2	STRATO 3
STAZIONE	[m]	[m]	[m/s]	[m]	[m/s]	[m]	[m/s]
1	0	130.00	771	126.42	1545	120.71	2383
1.5	2.5	130.00	770	126.42	1545	120.73	2388
2	5	130.00	768	126.42	1545	120.76	2394
2.5	7.5	130.00	767	126.42	1545	120.78	2400
3	10	130.00	765	126.42	1545	120.80	2408
3.5	12.5	130.00	762	126.42	1545	120.83	2417
4	15	130.00	758	126.42	1545	120.85	2428
4.5	17.5	130.00	754	126.42	1545	120.87	2443
5	20	130.00	749	126.42	1545	120.89	2458
5.5	22.5	130.00	742	126.42	1545	120.90	2475
6	25	130.00	736	126.42	1545	120.91	2494
6.5	27.5	130.00	730	126.42	1545	120.92	2513
7	30	130.00	723	126.42	1545	120.92	2531
7.5	32.5	130.00	715	126.42	1545	120.92	2550
8	35	130.00	707	126.42	1545	120.91	2566
8.5	37.5	130.00	699	126.42	1545	120.88	2581
9	40	130.00	691	126.42	1545	120.86	2598
9.5	42.5	130.00	684	126.42	1545	120.82	2614
10	45	130.00	677	126.42	1545	120.78	2629
10.5	47.5	130.00	667	126.42	1545	120.74	2643
11	50	130.00	657	126.42	1545	120.68	2655
11.5	52.5	130.00	651	126.42	1545	120.61	2662
12	55	130.00	645	126.42	1545	120.53	2667
12.5	57.5	130.00	647	126.42	1545	120.44	2671
13	60	130.00	649	126.42	1545	120.34	2674
13.5	62.5	130.00	648	126.42	1545	120.24	2675
14	65	130.00	648	126.42	1538	120.13	2674
14.5	67.5	130.00	654	126.40	1523	120.01	2670
15	70	130.00	661	126.39	1501	119.89	2664
15.5	72.5	130.00	680	126.36	1476	119.76	2657
16	75	130.00	698	126.34	1451	119.62	2649
16.5	77.5	130.00	712	126.32	1442	119.49	2639
17	80	130.00	726	126.29	1439	119.36	2629
17.5	82.5	130.00	727	126.26	1435	119.25	2621
18	85	130.00	728	126.24	1431	119.15	2614
18.5	87.5	130.00	729	126.21	1427	119.05	2611
19	90	130.00	730	126.18	1426	118.97	2608
19.5	92.5	130.00	723	126.17	1434	118.89	2606
20	95	130.00	716	126.16	1448	118.81	2603
20.5	97.5	130.00	701	126.15	1468	118.73	2600
21	100	130.00	686	126.14	1490	118.66	2598
21.5	102.5	130.00	667	126.14	1506	118.60	2596
22	105	130.00	648	126.14	1506	118.55	2595
22.5	107.5	130.00	633	126.14	1506	118.51	2595
23	110	130.00	619	126.14	1506	118.48	2594
23.5	112.5	130.00	613	126.14	1506	118.45	2594
24	115	130.00	606	126.14	1506	118.43	2595

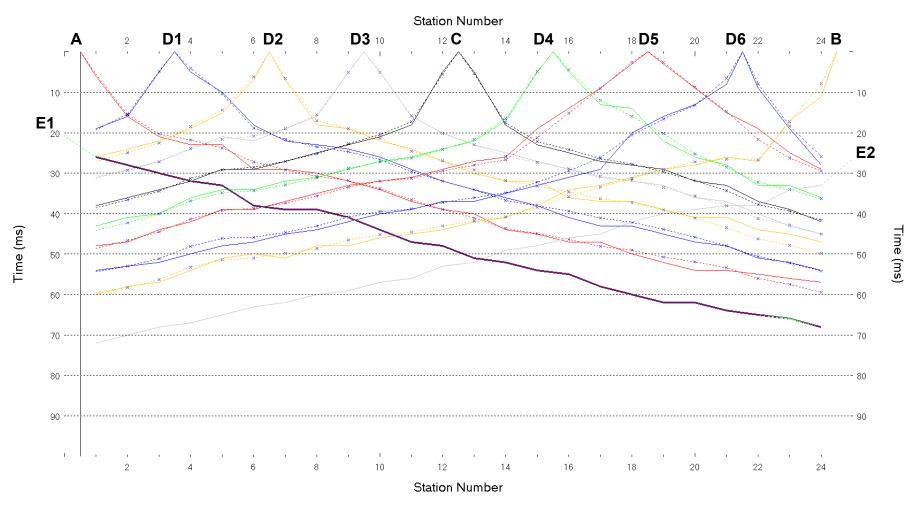


Fig. VII-2: Stesa sismica 39_SR ONDE P – Dromocrone – Scala 1:600

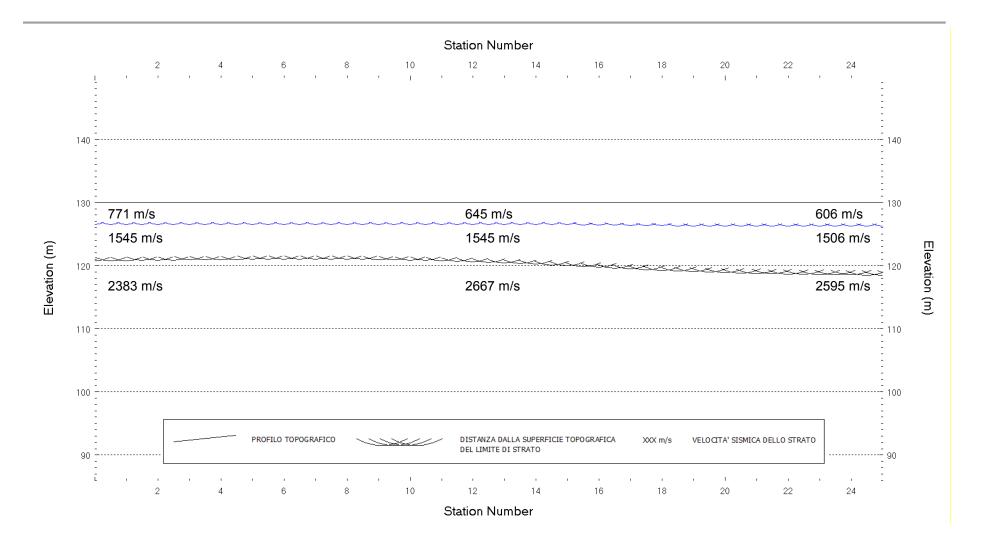
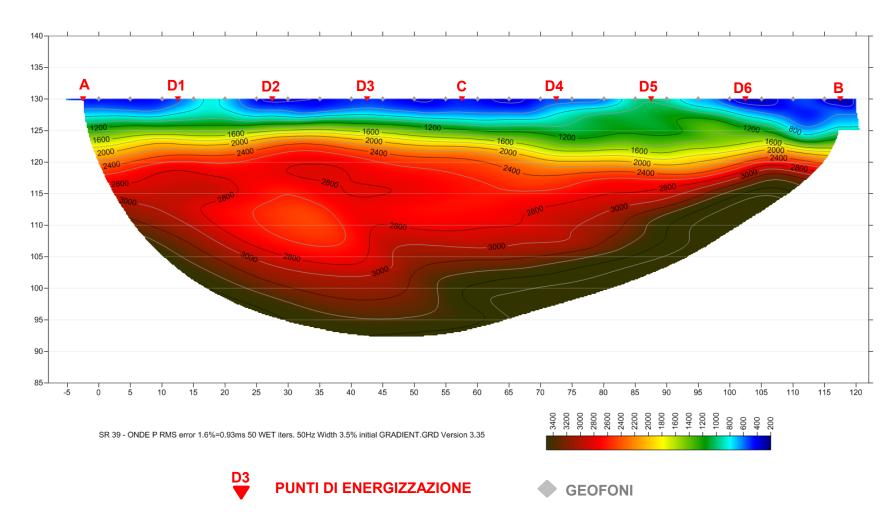
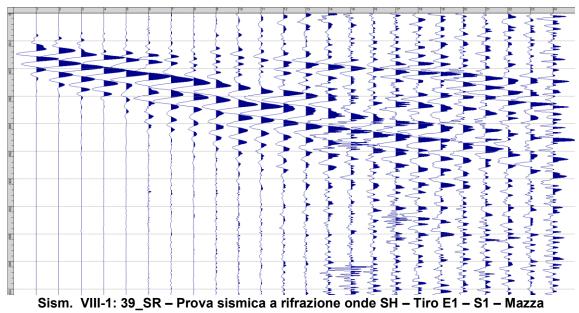
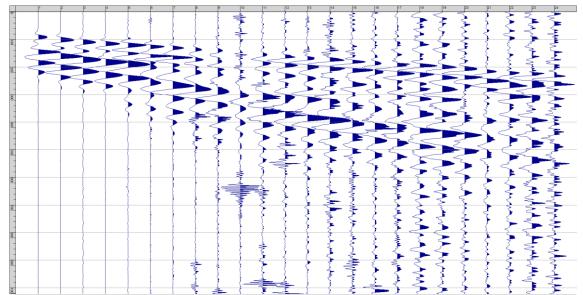


Fig. VII-3: Stesa sismica 39_SR ONDE P - Sezione Sismostratigrafica - Scala 1:600


Fig. VII-4: Stesa sismica 39_SR ONDE P – Tomografia sismica - Scala 1:600

VIII. ALLEGATO GRAFICO: STESA SISMICA 39_SR ONDE SH – SISMOGRAMMI
- TABULATI PRIMI ARRIVI – TABULATI PROFONDITA' E VELOCITA'
RIFRATTORI – DROMOCRONE — SEZIONI SISMOSTRATIGRAFICHE –
TOMOGRAFIE

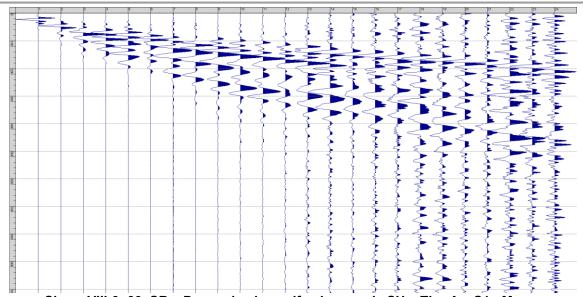
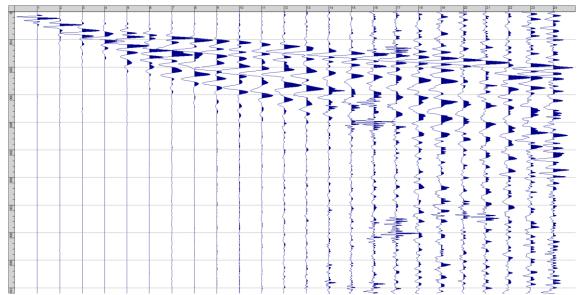
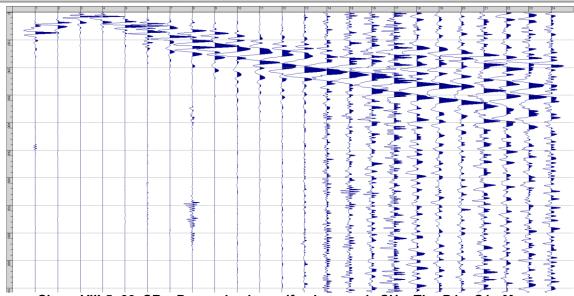
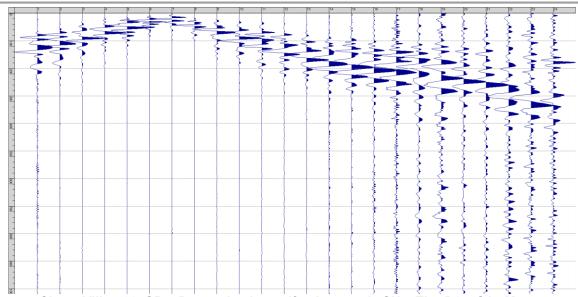


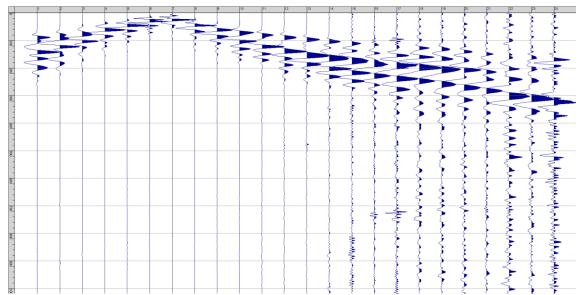
Fig. VIII-1: Ripresa fotografica ed inquadramento scala 1:5000

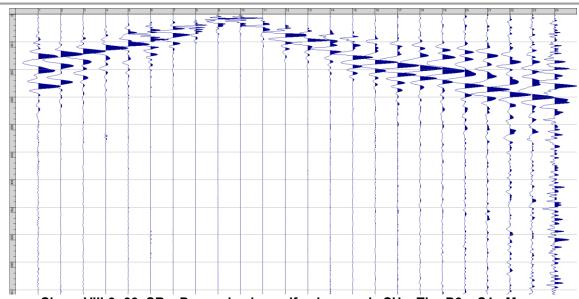


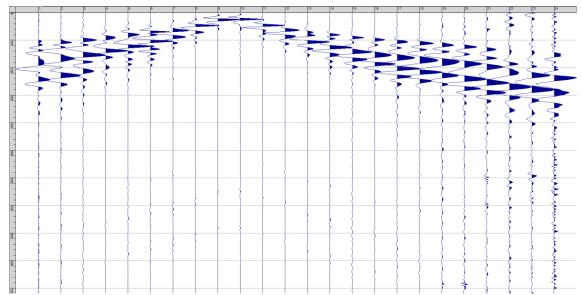

Sism. VIII-2: 39_SR - Prova sismica a rifrazione onde SH - Tiro E1 - S2 - Mazza

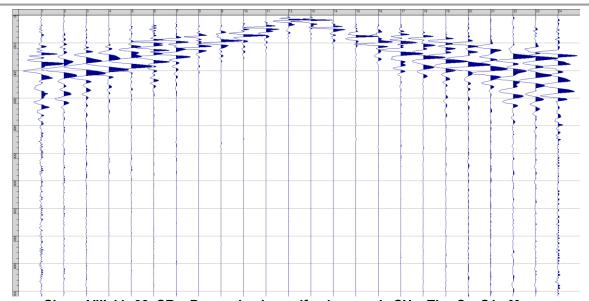
Sism. VIII-3: 39_SR - Prova sismica a rifrazione onde SH - Tiro A - S1 - Mazza

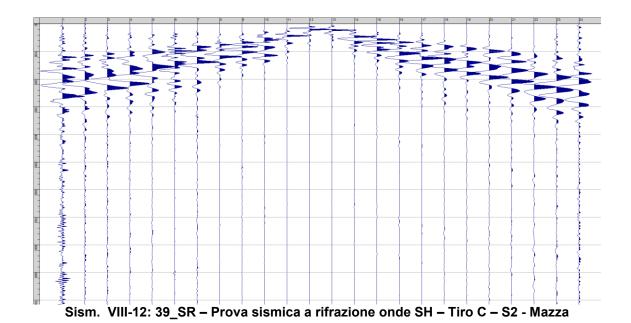

Sism. VIII-4: 39_SR - Prova sismica a rifrazione onde SH - Tiro A - S2 - Mazza

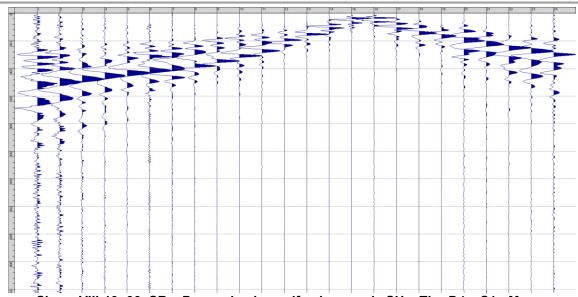

Sism. VIII-5: 39_SR – Prova sismica a rifrazione onde SH – Tiro D1 – S1 - Mazza

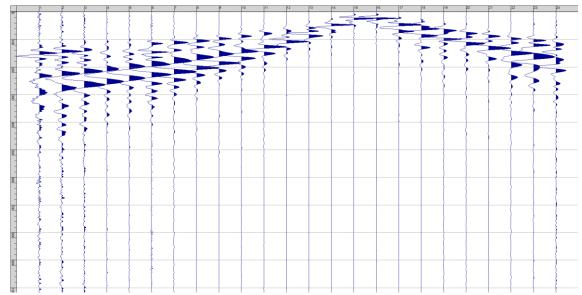

Sism. VIII-6: 39_SR - Prova sismica a rifrazione onde SH - Tiro D1 - S2 - Mazza

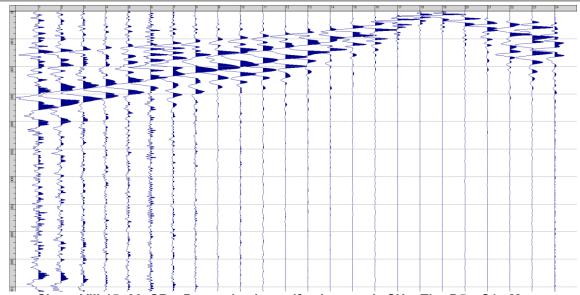

Sism. VIII-7: 39_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S1 - Mazza

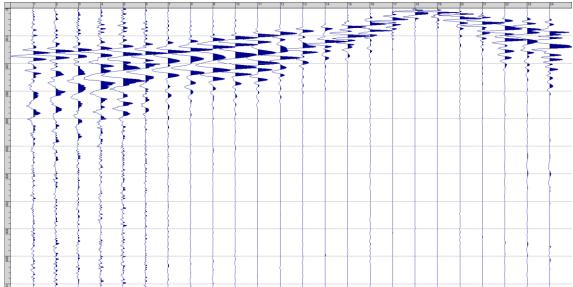

Sism. VIII-8: 39_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S2 - Mazza

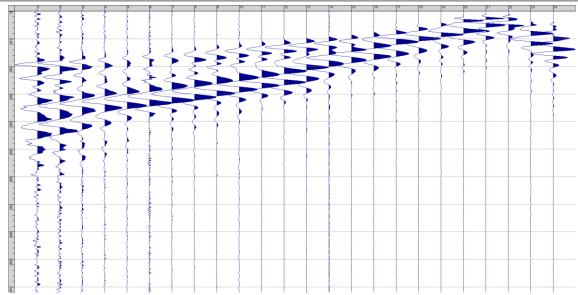

Sism. VIII-9: 39_SR – Prova sismica a rifrazione onde SH – Tiro D3 – S1 - Mazza

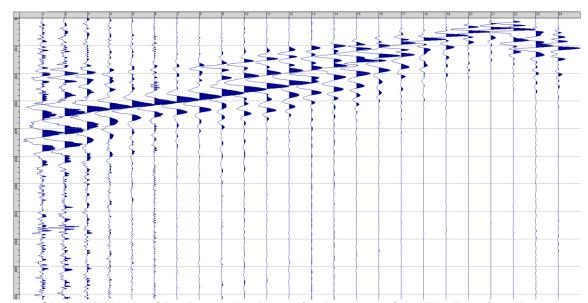

Sism. VIII-10: 39_SR - Prova sismica a rifrazione onde SH - Tiro D3 - S2 - Mazza

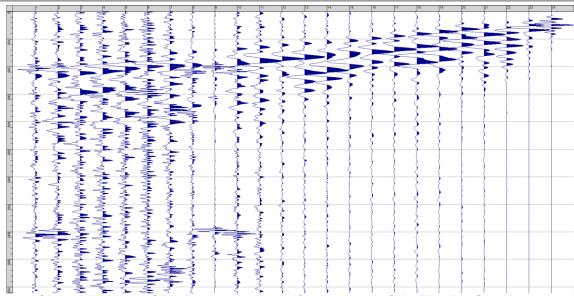

Sism. VIII-11: 39_SR - Prova sismica a rifrazione onde SH - Tiro C - S1 - Mazza

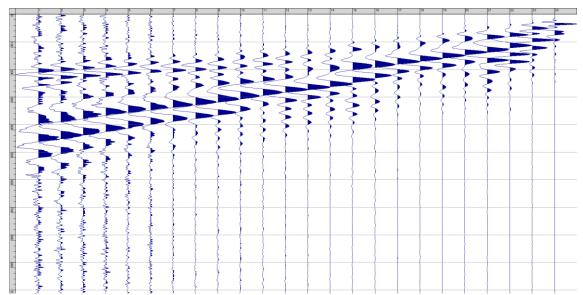

ENKI s.r.l. – info@enki.it - Firenze

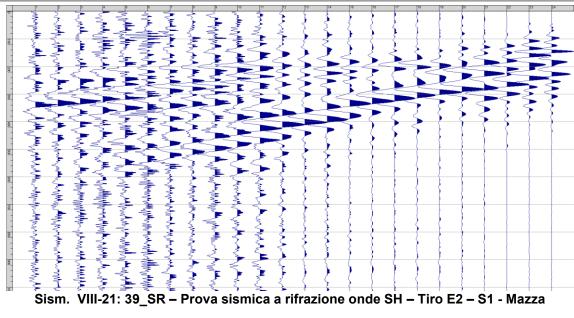

Sism. VIII-13: 39_SR - Prova sismica a rifrazione onde SH - Tiro D4 - S1 - Mazza

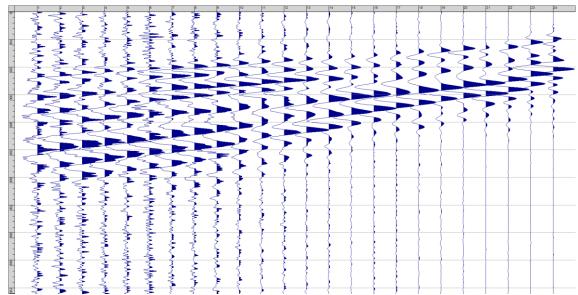

Sism. VIII-14: 39_SR - Prova sismica a rifrazione onde SH - Tiro D4 - S2 - Mazza


Sism. VIII-15: 39_SR - Prova sismica a rifrazione onde SH - Tiro D5 - S1 - Mazza


Sism. VIII-16: 39_SR - Prova sismica a rifrazione onde SH - Tiro D5 - S2 - Mazza


Sism. VIII-17: 39_SR - Prova sismica a rifrazione onde SH - Tiro D6 - S1 - Mazza


Sism. VIII-18: 39_SR - Prova sismica a rifrazione onde SH - Tiro D6 - S2 - Mazza



Sism. VIII-19: 39_SR - Prova sismica a rifrazione onde SH - Tiro B - S1 - Mazza

Sism. VIII-20: 39_SR - Prova sismica a rifrazione onde SH - Tiro B - S2 - Mazza

Sism. VIII-22: 39_SR - Prova sismica a rifrazione onde SH - Tiro E2 - S1- Mazza

Tab. VIII-1: Stesa sismica 39_SR ONDE SH - Schema dettagliato

GEOFONI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
DISTANZA PROGRESSIVA [m]	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115
DISTANZA PARZIALI [m]	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
QUOTA [m]	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0

Tab. VIII-2: Stesa sismica 39_SR ONDE SH - Punti energizzazione (SCOPPIO)

	E1	Α	D1	D2	D3	С	D4	D5	D6	В	E2
	ESTERNO SX	ESTREMO SX	INTERMEDIO SX	INTERMEDIO SX	INTERMEDIO SX	CENTRALE	INTERMEDIO DX	INTERMEDIO DX	INTERMEDIO DX	ESTREMO SX	ESTERNO DX
POSIZIONE DAL GEOFONO 1 [m]	-25.00	-2.50	12.50	27.50	42.50	57.50	72.50	87.50	102.50	117.50	140.00
QUOTA [m]	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0

Tab. VIII-3: Stesa sismica 39_SR ONDE SH- Tabella scoppi - primi arrivi

GEOFONO	DISTANZA [m]	SCOPPIO E1 PRIMO ARRIVO [ms]	SCOPPIO A PRIMO ARRIVO [ms]	PRIMO	SCOPPIO D2 PRIMO ARRIVO [ms]	PRIMO	SCOPPIO C PRIMO ARRIVO [ms]	PRIMO	SCOPPIO D5 PRIMO ARRIVO [ms]	PRIMO	SCOPPIO B PRIMO ARRIVO [ms]	SCOPPIO E2 PRIMO ARRIVO [ms]
1	0	75	13	45	73	88	108	126	142	163	173	200
2	5	81	33	31	63	89	99	122	136	158	170	196
3	10	-1000	-1000	8	42	82	93	115	133	157	165	195
4	15	95	53	9	34	70	88	111	125	154	167	193
5	20	100	61	21	22	58	80	105	118	153	160	188
6	25	106	69	32	11	49	71	99	115	144	152	182
7	30	113	75	48	8	46	70	95	110	136	149	178
8	35	119	81	56	27	32	63	89	101	132	140	170
9	40	120	85	63	41	12	45	82	95	123	134	162
10	45	123	93	68	54	10	37	74	89	116	129	156
11	50	130	99	81	62	25	23	66	82	111	121	149
12	55	137	106	87	72	39	9	52	74	102	113	-1000
13	60	139	109	101	76	50	10	46	64	94	108	144
14	65	153	117	102	84	59	32	33	59	86	106	141
15	70	163	124	107	90	65	42	11	47	77	99	140
16	75	163	128	110	100	79	53	10	36	70	92	140
17	80	173	128	120	105	85	61	17	16	62	78	138
18	85	173	138	120	110	91	68	31	7	49	74	126
19	90	178	141	125	115	98	76	45	7	30	65	117
20	95	184	149	135	124	101	83	49	11	16	55	112
21	100	190	153	141	130	111	88	66	26	6	47	105
22	105	192	153	146	134	118	100	76	32	8	43	98
23	110	196	157	148	137	126	103	85	34	33	29	79
24	115	200	158	149	140	127	110	88	39	41	20	70

Tab. VIII-4:Stesa sismica 39_SR ONDE SH – Sezione sismostratigrafica - Rifrattori spessori e velocità

05050111	D10=111=1	QUOTA PROFILO	VELOCITA'	QUOTA	VELOCITA'	QUOTA	VELOCITA'
GEOFONI	DISTANZA	TOPOGRAFICO		STRATO 1	STRATO 2	STRATO 2	STRATO 3
STAZIONE	[m]	[m]	[m/s]	[m]	[m/s]	[m]	[m/s]
1	0	130.00	294	126.98	561	118.76	816
1.5	2.5	130.00	294	126.99	565	118.79	815
2	5	130.00	294	127.00	569	118.82	814
2.5	7.5	130.00	294	127.01	570	118.84	813
3	10	130.00	294	127.00	571	118.84	813
3.5	12.5	130.00	294	126.99	571	118.82	813
4	15	130.00	294	126.96	575	118.77	814
4.5	17.5	130.00	294	126.91	581	118.71	816
5	20	130.00	294	126.83	586	118.64	819
5.5	22.5	130.00	296	126.72	591	118.55	823
6	25	130.00	299	126.57	598	118.44	828
6.5	27.5	130.00	301	126.39	605	118.30	832
7	30	130.00	303	126.21	617	118.14	838
7.5	32.5	130.00	307	126.02	629	117.97	843
8	35	130.00	312	125.82	643	117.78	850
8.5	37.5	130.00	314	125.64	657	117.59	859
9	40	130.00	317	125.46	669	117.38	869
9.5	42.5	130.00	316	125.30	677	117.16	879
10	45	130.00	314	125.17	683	116.93	888
10.5	47.5	130.00	311	125.09	690	116.68	898
11	50	130.00	309	125.06	694	116.43	906
11.5	52.5	130.00	312	125.07	692	116.17	912
12	55	130.00	316	125.13	689	115.92	916
12.5	57.5	130.00	314	125.22	682	115.67	920
13	60	130.00	312	125.34	673	115.44	924
13.5	62.5	130.00	309	125.49	663	115.22	928
14	65	130.00	306	125.67	652	115.02	930
14.5	67.5	130.00	309	125.88	641	114.84	931
15	70	130.00	312	126.11	629	114.68	931
15.5	72.5	130.00	314	126.35	618	114.53	932
16	75	130.00	317	126.59	606	114.40	933
16.5	77.5	130.00	314	126.82	595	114.30	932
17	80	130.00	312	127.05	586	114.22	933
17.5	82.5	130.00	310	127.26	576	114.16	936
18	85	130.00	309	127.46	568	114.11	938
18.5	87.5	130.00	309	127.63	561	114.07	939
19	90	130.00	309	127.77	553	114.03	939
19.5	92.5	130.00	309	127.89	546	113.99	940
20	95	130.00	309	127.97	540	113.98	940
20.5	97.5	130.00	309	128.03	535	113.98	941
21	100	130.00	309	128.05	530	113.98	942
21.5	102.5	130.00	309	128.06	525	114.00	945
22	105	130.00	309	128.05	520	114.01	949
22.5	107.5	130.00	309	128.02	516	114.03	953
23	110	130.00	309	127.98	513	114.05	958
23.5	112.5	130.00	309	127.93	510	114.07	962
24	115	130.00	309	127.89	509	114.09	966

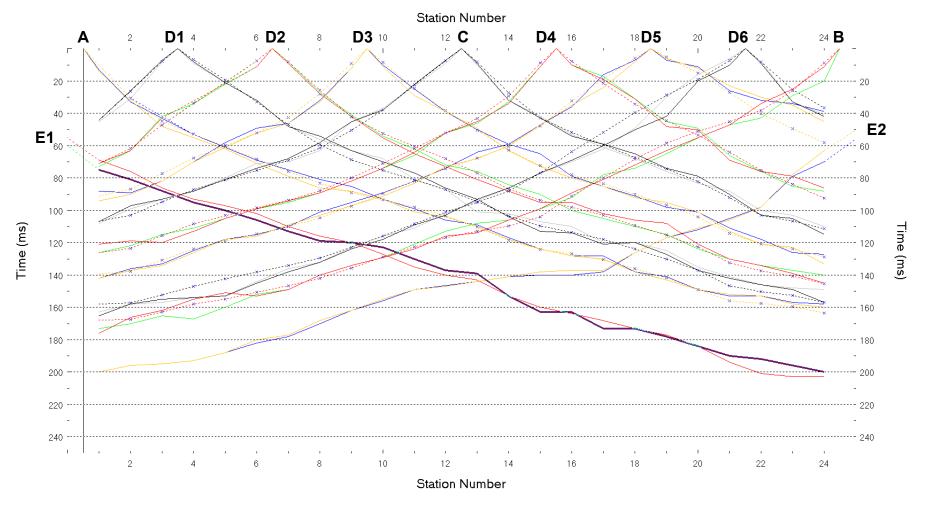


Fig. VIII-2:Stesa sismica 39_SR ONDE SH – Dromocrone – Scala 1:600

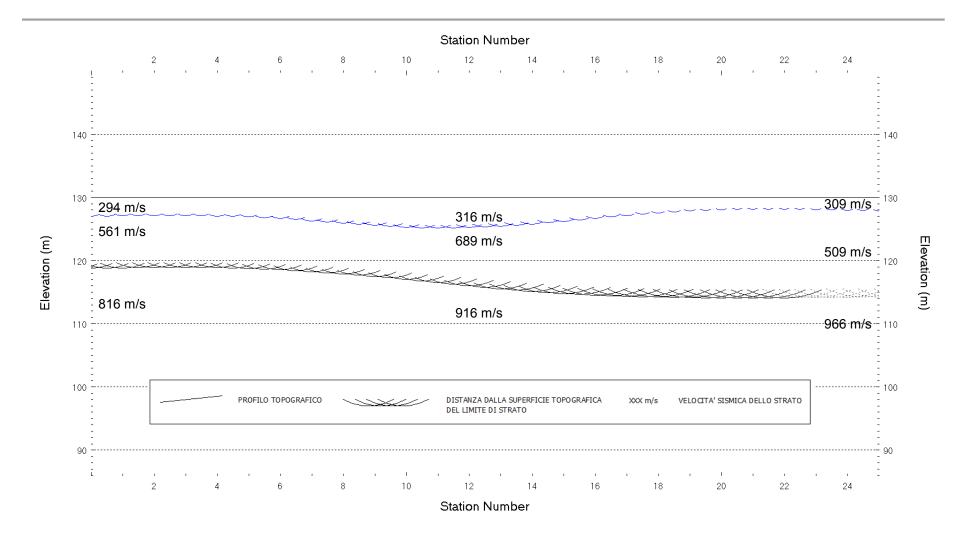
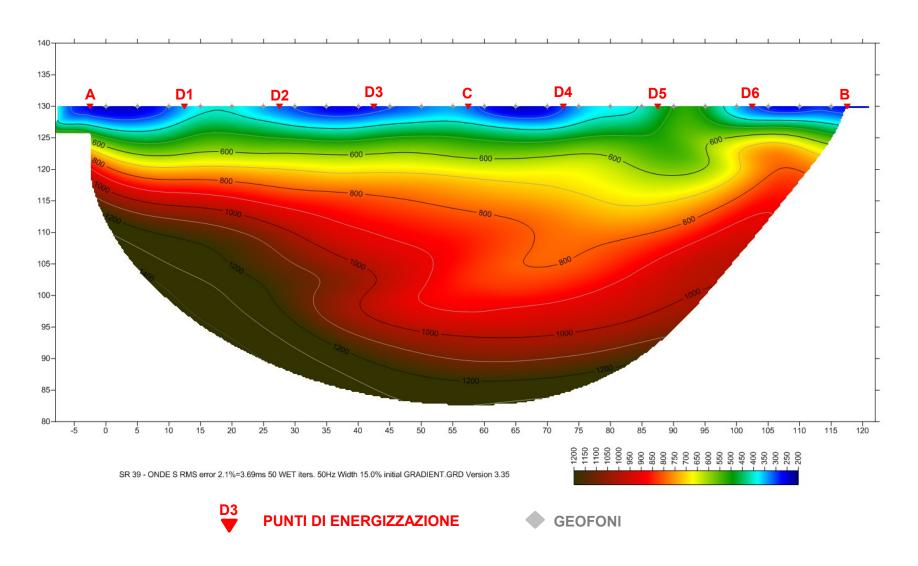
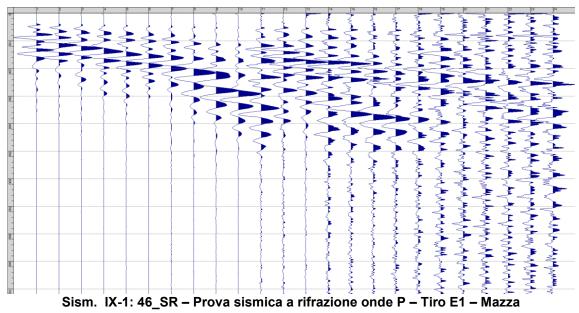
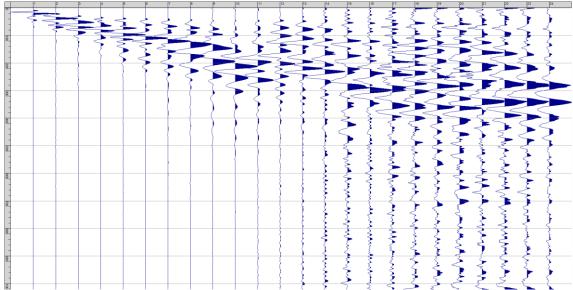


Fig. VIII-3: Stesa sismica 39_SR ONDE SH - Sezione Sismostratigrafica - Scala 1:600


Fig. VIII-4: Stesa sismica 39_SR ONDE SH – Tomografia sismica - Scala 1:600

IX. ALLEGATO GRAFICO: STESA SISMICA 46_SR ONDE P – SISMOGRAMMI - TABULATI PRIMI ARRIVI – TABULATI PROFONDITA' E VELOCITA' RIFRATTORI – DROMOCRONE — SEZIONI SISMOSTRATIGRAFICHE – TOMOGRAFIE

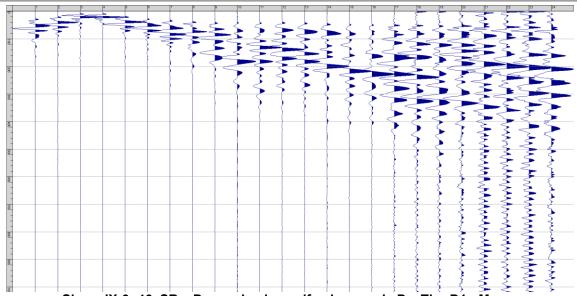
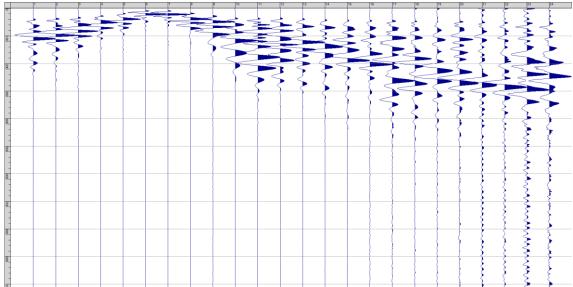
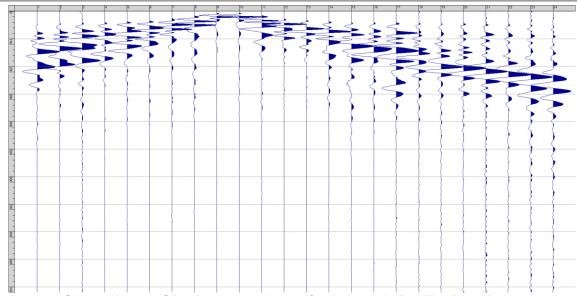
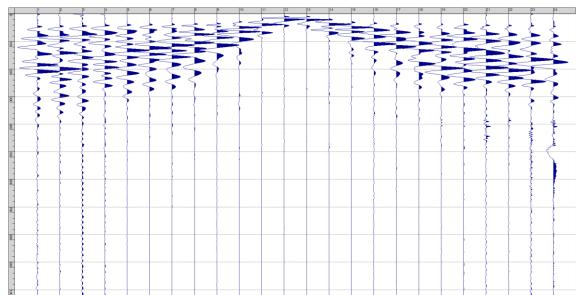
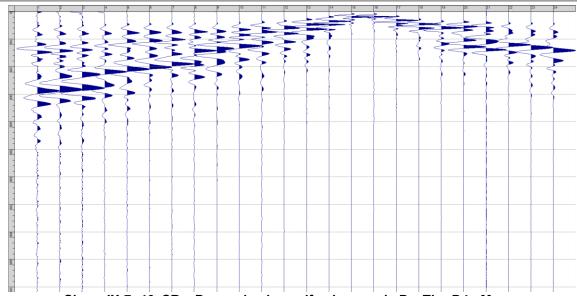


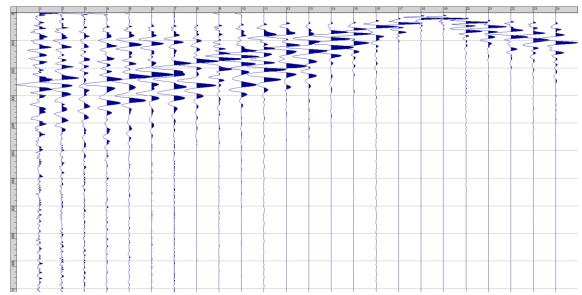
Fig. IX-1: Ripresa fotografica ed inquadramento scala 1:5000

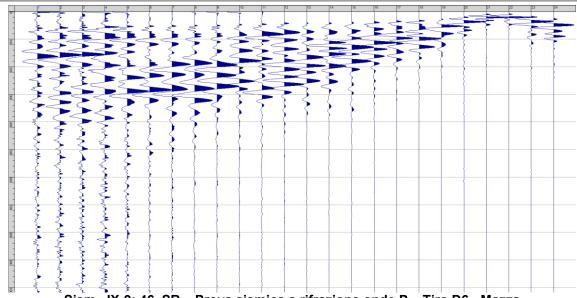


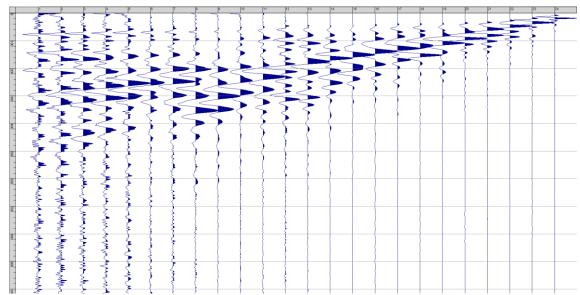

Sism. IX-2: 46_SR – Prova sismica a rifrazione onde P – Tiro A - Mazza

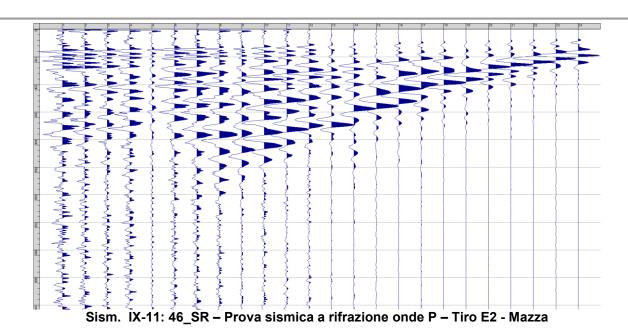

Sism. IX-3: 46_SR – Prova sismica a rifrazione onde P – Tiro D1 - Mazza


Sism. IX-4: 46_SR – Prova sismica a rifrazione onde P – Tiro D2 - Mazza


Sism. IX-5: 46_SR - Prova sismica a rifrazione onde P - Tiro D3 - Mazza


Sism. IX-6: 46_SR – Prova sismica a rifrazione onde P – Tiro C - Mazza


Sism. IX-7: 46_SR - Prova sismica a rifrazione onde P - Tiro D4 - Mazza


Sism. IX-8: 46_SR – Prova sismica a rifrazione onde P – Tiro D5 - Mazza

Sism. IX-9: 46_SR – Prova sismica a rifrazione onde P – Tiro D6 - Mazza

Sism. IX-10: 46_SR - Prova sismica a rifrazione onde P - Tiro B - Mazza

Tab. IX-1: Stesa sismica 46_SR ONDE P - Schema dettagliato

GEOFONI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
DISTANZA PROGRESSIVA [m]	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80	84	88	92
DISTANZA PARZIALI [m]	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
QUOTA [m]	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0

Tab. IX-2: Stesa sismica 46_SR ONDE P - Punti energizzazione (SCOPPIO)

	[E1	А	D1	D2	D3	С	D4	D5	D6	В	E2
_		ESTERNO SX	ESTREMO SX	INTERMEDIO SX	INTERMEDIO SX	INTERMEDIO SX	CENTRALE	INTERMEDIO DX	INTERMEDIO DX	INTERMEDIO DX	ESTREMO SX	ESTERNO DX
	POSIZIONE DAL GEOFONO 1 [m]	-20.00	-2.00	10.00	22.00	34.00	46.00	58.00	70.00	82.00	94.00	112.00
	QUOTA [m]	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0

Tab. IX-3: Stesa sismica 46_SR ONDE P - Tabella scoppi - primi arrivi

GEOFONO	DISTANZA [m]	SCOPPIO E1 PRIMO ARRIVO [ms]	PRIMO	PRIMO	PRIMO	SCOPPIO D3 PRIMO ARRIVO [ms]	PRIMO	PRIMO	SCOPPIO D5 PRIMO ARRIVO [ms]	SCOPPIO D6 PRIMO ARRIVO [ms]	SCOPPIO B PRIMO ARRIVO [ms]	SCOPPIO E2 PRIMO ARRIVO [ms]
1	0	36	5	25	35	44	43	48	53	56	59	68
2	4	37	17	17	33	41	41	47	50	53	59	67
3	8	39	26	7	30	40	41	45	49	53	56	67
4	12	41	32	7	24	39	38	44	46	52	54	64
5	16	42	34	17	16	36	36	42	46	50	53	63
6	20	43	35	24	6	32	34	41	41	49	53	62
7	24	44	38	29	6	24	34	41	44	49	51	62
8	28	47	41	35	15	15	33	40	42	47	51	60
9	32	49	43	37	24	5	33	40	42	47	49	59
10	36	49	42	38	32	5	25	36	37	44	48	56
11	40	50	43	38	33	15	16	33	38	42	47	54
12	44	49	42	38	32	26	6	29	34	38	43	51
13	48	52	43	39	34	30	7	22	33	38	43	50
14	52	54	42	42	38	35	17	15	31	38	44	51
15	56	56	49	45	40	38	26	5	29	36	41	47
16	60	56	51	45	40	39	30	5	25	33	41	45
17	64	58	54	47	41	40	32	13	18	31	36	44
18	68	59	50	49	44	42	33	22	7	29	35	42
19	72	60	52	50	46	43	34	29	6	22	33	41
20	76	61	53	48	45	41	35	32	18	16	31	38
21	80	61	57	53	45	46	38	35	25	5	28	37
22	84	65	59	53	49	46	39	37	28	6	21	35
23	88	67	58	54	51	48	40	38	32	15	15	34
24	92	68	58	55	52	49	43	40	33	23	6	33

Tab. IX-4:Stesa sismica 46_SR ONDE P – Sezione sismostratigrafica - Rifrattori spessori e velocità

05050111	D10744174	QUOTA PROFILO	VELOCITA'	QUOTA	VELOCITA'	QUOTA	VELOCITA'
GEOFONI	DISTANZA	TOPOGRAFICO	STRATO 1	STRATO 1	STRATO 2	STRATO 2	STRATO 3
STAZIONE	[m]	[m]	[m/s]	[m]	[m/s]	[m]	[m/s]
1	0	164.00	443	159.23	1733	151.93	2882
1.5	2	164.00	437	159.35	1684	152.09	2864
2	4	164.00	431	159.49	1631	152.25	2846
2.5	6	164.00	425	159.65	1562	152.42	2830
3	8	164.00	420	159.83	1489	152.58	2815
3.5	10	164.00	414	160.02	1415	152.73	2801
4	12	164.00	408	160.22	1344	152.88	2789
4.5	14	164.00	403	160.42	1279	153.01	2780
5	16	164.00	398	160.59	1223	153.14	2774
5.5	18	164.00	393	160.75	1175	153.26	2770
6	20	164.00	388	160.87	1127	153.38	2769
6.5	22	164.00	388	160.97	1091	153.49	2768
7	24	164.00	388	161.05	1077	153.58	2768
7.5	26	164.00	388	161.12	1069	153.65	2766
8	28	164.00	388	161.16	1081	153.70	2766
8.5	30	164.00	388	161.19	1089	153.74	2773
9	32	164.00	388	161.21	1095	153.77	2784
9.5	34	164.00	388	161.21	1093	153.78	2795
10	36	164.00	388	161.21	1090	153.78	2803
10.5	38	164.00	388	161.22	1086	153.76	2809
11	40	164.00	388	161.22	1088	153.75	2813
11.5	42	164.00	388	161.24	1093	153.72	2814
12	44	164.00	388	161.25	1097	153.70	2813
12.5	46	164.00	388	161.26	1094	153.68	2808
13	48	164.00	388	161.27	1092	153.66	2801
13.5	50	164.00	388	161.28	1091	153.66	2792
14	52	164.00	388	161.29	1098	153.67	2780
14.5	54	164.00	388	161.31	1106	153.69	2764
15	56	164.00	388	161.32	1113	153.71	2745
15.5	58	164.00	388	161.33	1114	153.73	2722
16	60	164.00	388	161.34	1114	153.74	2696
16.5	62	164.00	388	161.36	1112	153.76	2666
17	64	164.00	388	161.37	1113	153.78	2638
17.5	66	164.00	388	161.38	1114	153.81	2611
18	68	164.00	388	161.39	1115	153.82	2588
18.5	70	164.00	388	161.40	1107	153.84	2566
19	72	164.00	388	161.41	1099	153.85	2544
19.5	74	164.00	388	161.41	1098	153.85	2521
20	76	164.00	388	161.41	1107	153.86	2500
20.5	78	164.00	388	161.42	1120	153.87	2482
21	80	164.00	388	161.42	1135	153.88	2465
21.5	82	164.00	388	161.41	1147	153.89	2452
22	84	164.00	388	161.40	1159	153.89	2443
22.5	86	164.00	388	161.39	1170	153.88	2435
23	88	164.00	388	161.38	1186	153.88	2429
23.5	90	164.00	388	161.37	1204	153.87	2425
24	92	164.00	388	161.36	1223	153.86	2421

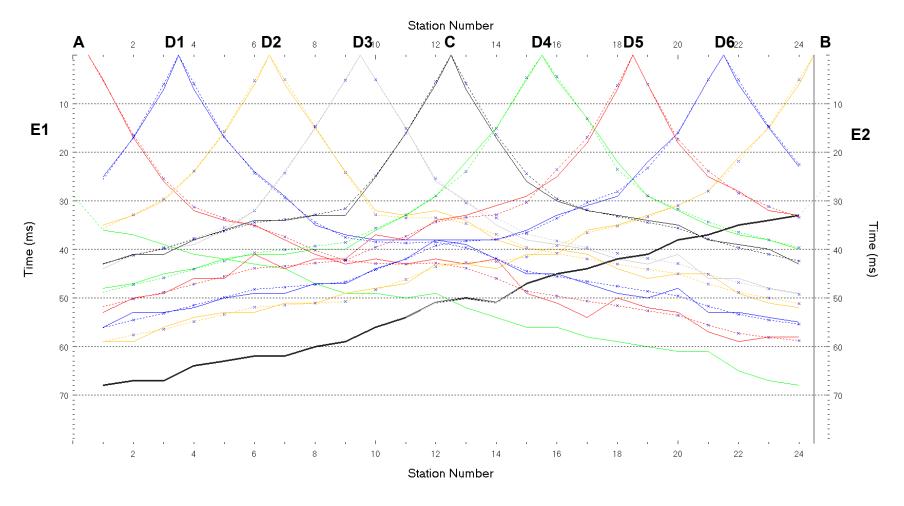


Fig. IX-2: Stesa sismica 46_SR ONDE P – Dromocrone – Scala 1:500

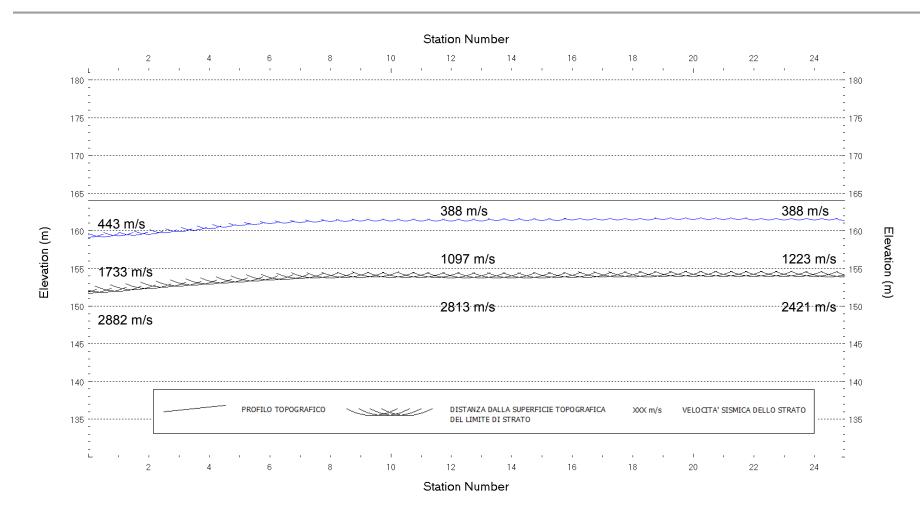


Fig. IX-3: Stesa sismica 46_SR ONDE P – Sezione Sismostratigrafica – Scala 1:500

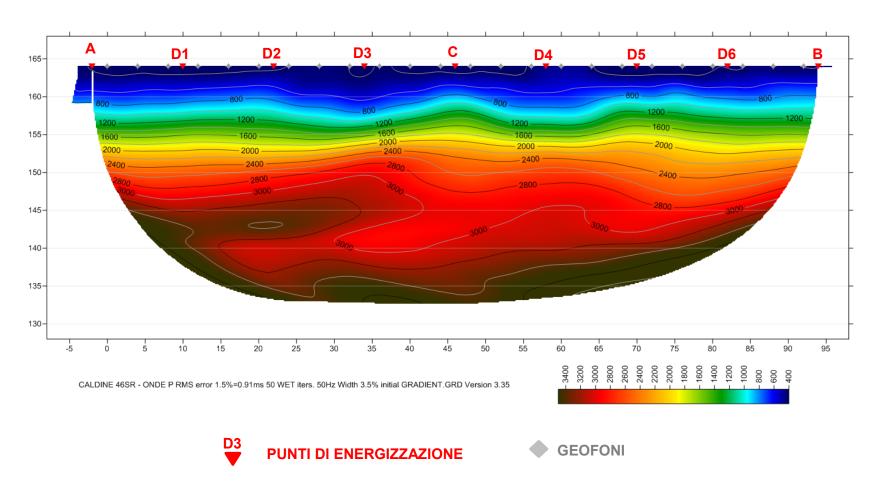
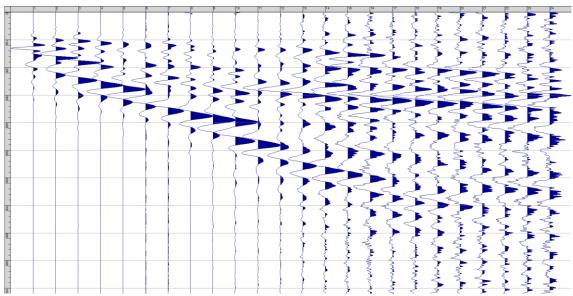
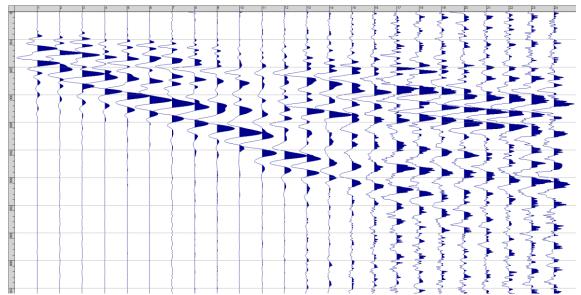
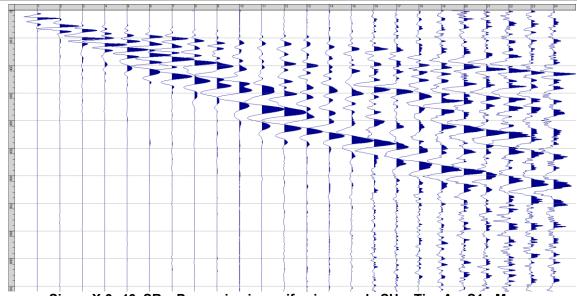
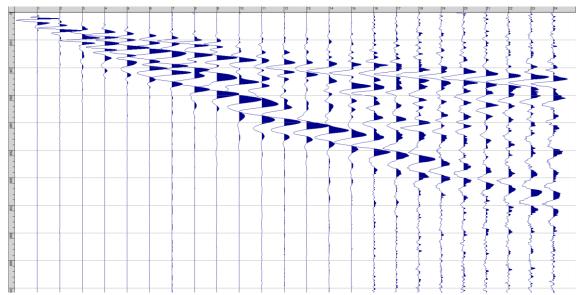
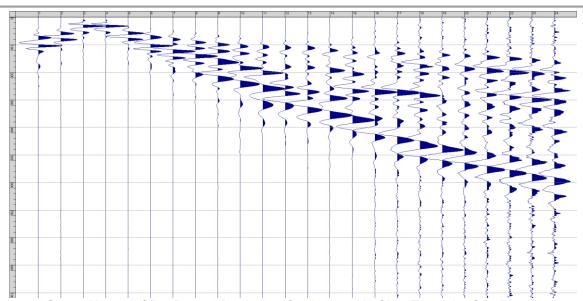



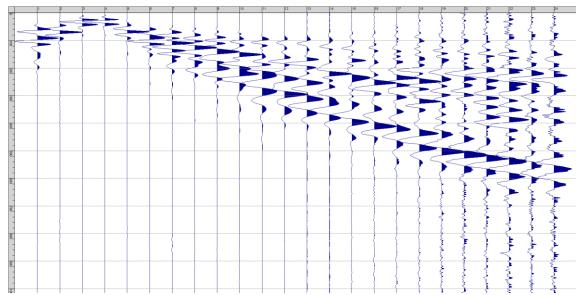
Fig. IX-4: Stesa sismica 46_SR ONDE P – Tomografia sismica - Scala 1:500

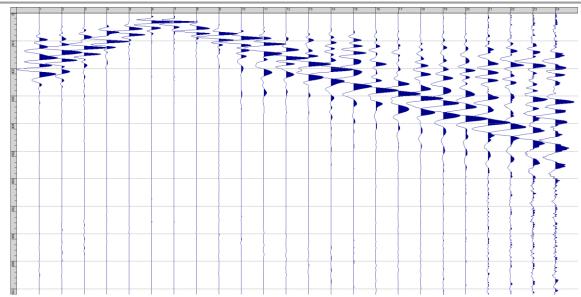

X. ALLEGATO GRAFICO: STESA SISMICA 46_SR ONDE SH – SISMOGRAMMI
 - TABULATI PRIMI ARRIVI – TABULATI PROFONDITA' E VELOCITA'
 RIFRATTORI – DROMOCRONE — SEZIONI SISMOSTRATIGRAFICHE –
 TOMOGRAFIE

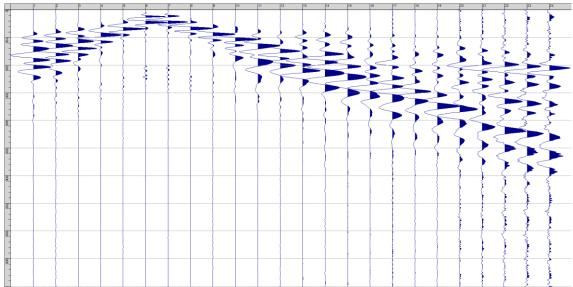

Fig. X-1: Ripresa fotografica ed inquadramento scala 1:5000

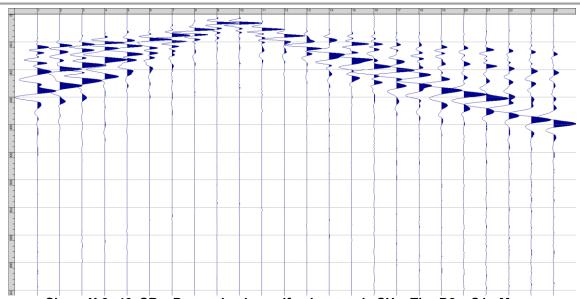

Sism. X-1: 46_SR – Prova sismica a rifrazione onde SH – Tiro E1 – S1 – Mazza

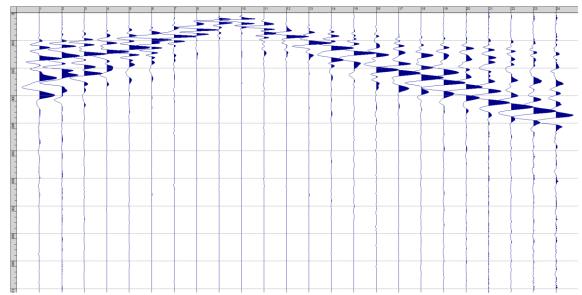

Sism. X-2: 46_SR - Prova sismica a rifrazione onde SH - Tiro E1 - S2 - Mazza

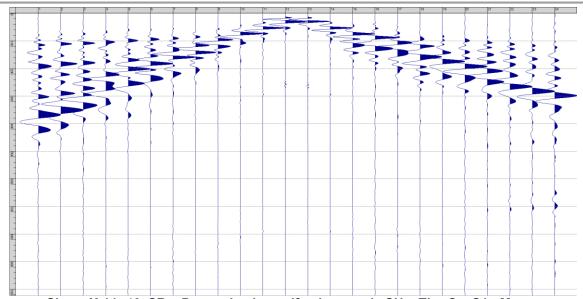

Sism. X-3: 46_SR - Prova sismica a rifrazione onde SH - Tiro A - S1 - Mazza

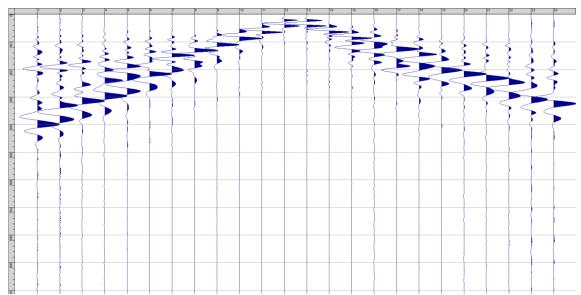

Sism. X-4: 46_SR – Prova sismica a rifrazione onde SH – Tiro A – S2 - Mazza

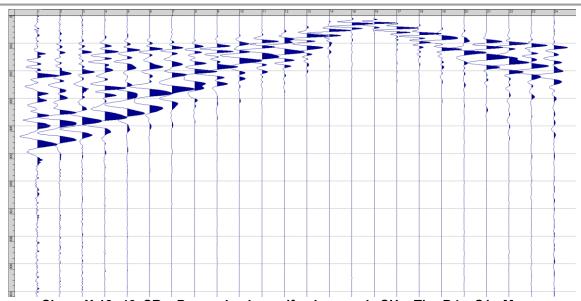

Sism. X-5: 46_SR – Prova sismica a rifrazione onde SH – Tiro D1 – S1 - Mazza

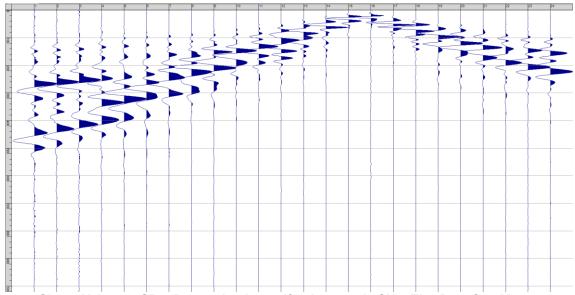

Sism. X-6: 46_SR - Prova sismica a rifrazione onde SH - Tiro D1 - S2 - Mazza

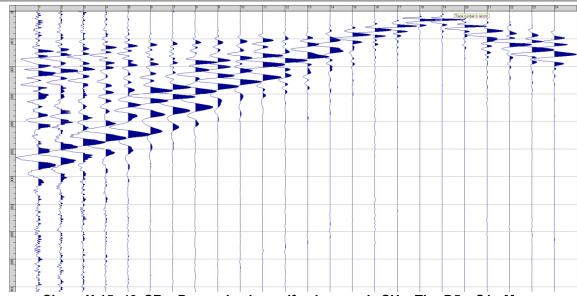

Sism. X-7: 46_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S1 - Mazza

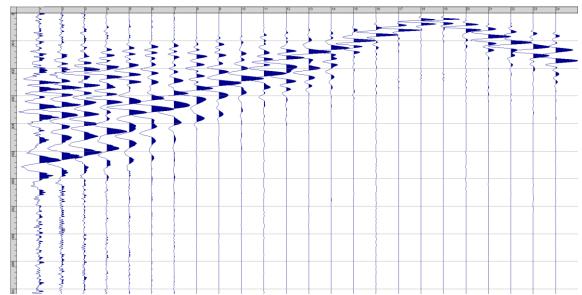

Sism. X-8: 46_SR – Prova sismica a rifrazione onde SH – Tiro D2 – S2 - Mazza

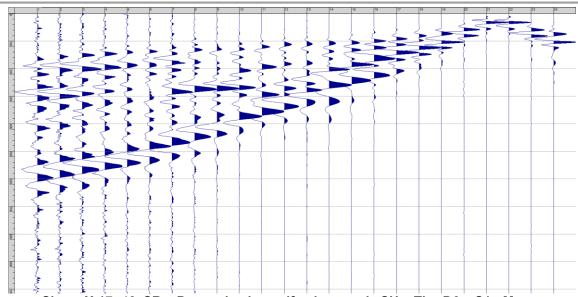

Sism. X-9: 46_SR – Prova sismica a rifrazione onde SH – Tiro D3 – S1 - Mazza

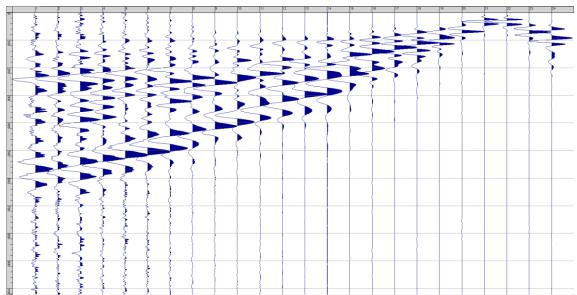

Sism. X-10: 46_SR - Prova sismica a rifrazione onde SH - Tiro D3 - S2 - Mazza

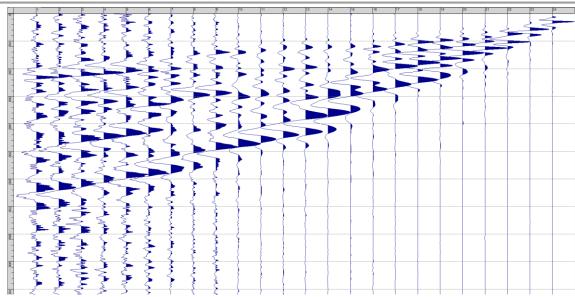

Sism. X-11: 46_SR – Prova sismica a rifrazione onde SH – Tiro C – S1 - Mazza

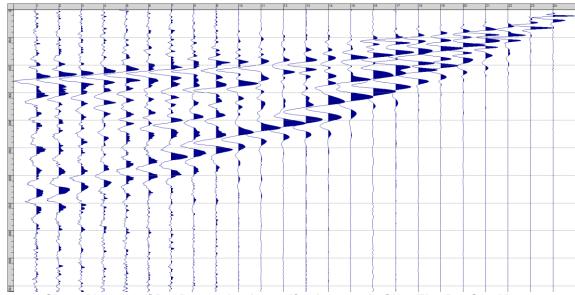

Sism. X-12: 46_SR - Prova sismica a rifrazione onde SH - Tiro C - S2 - Mazza

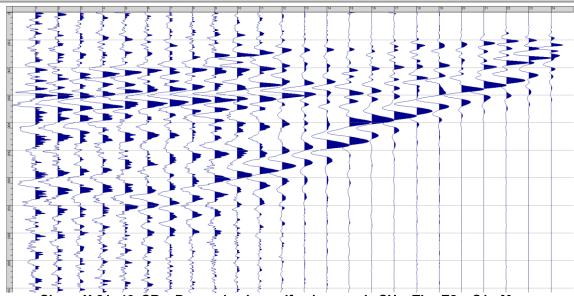

Sism. X-13: 46_SR - Prova sismica a rifrazione onde SH - Tiro D4 - S1 - Mazza

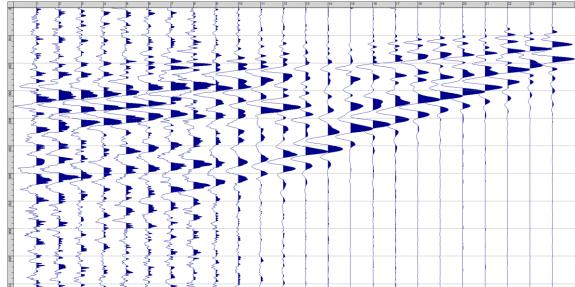

Sism. X-14: 46_SR - Prova sismica a rifrazione onde SH - Tiro D4 - S2 - Mazza


Sism. X-15: 46_SR - Prova sismica a rifrazione onde SH - Tiro D5 - S1 - Mazza


Sism. X-16: 46_SR – Prova sismica a rifrazione onde SH – Tiro D5 – S2 - Mazza


Sism. X-17: 46_SR - Prova sismica a rifrazione onde SH - Tiro D6 - S1 - Mazza


Sism. X-18: 46_SR - Prova sismica a rifrazione onde SH - Tiro D6 - S2 - Mazza


Sism. X-19: 46_SR - Prova sismica a rifrazione onde SH - Tiro B - S1 - Mazza

Sism. X-20: 46_SR - Prova sismica a rifrazione onde SH - Tiro B - S2 - Mazza

Sism. X-21: 46_SR - Prova sismica a rifrazione onde SH - Tiro E2 - S1 - Mazza

Sism. X-22: 46_SR – Prova sismica a rifrazione onde SH – Tiro E2 – S1- Mazza

Tab. X-1: Stesa sismica 46_SR ONDE SH - Schema dettagliato

GEOFONI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
DISTANZA PROGRESSIVA [m]	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80	84	88	92
DISTANZA PARZIALI [m]	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
QUOTA [m]	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0

Tab. X-2: Stesa sismica 46_SR ONDE SH - Punti energizzazione (SCOPPIO)

	E1	Α	D1	D2	D3	С	D4	D5	D6	В	E2
	ESTERNO SX	ESTREMO SX	INTERMEDIO SX	INTERMEDIO SX	INTERMEDIO SX	CENTRALE	INTERMEDIO DX	INTERMEDIO DX	INTERMEDIO DX	ESTREMO SX	ESTERNO DX
POSIZIONE DAL GEOFONO 1 [m]	-20.00	-2.00	10.00	22.00	34.00	46.00	58.00	70.00	82.00	94.00	112.00
QUOTA [m]	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0	164.0

Tab. X-3: Stesa sismica 46_SR ONDE SH- Tabella scoppi - primi arrivi

	DISTANZA	SCOPPIO E1	SCOPPIO A	SCOPPIO D1	SCOPPIO D2	SCOPPIO D3	SCOPPIO C	SCOPPIO D4	SCOPPIO D5	SCOPPIO D6	SCOPPIO B	SCOPPIO E2
GEOFONO		PRIMO										
	[m]	ARRIVO [ms]										
1	0	78	14	49	75	98	98	128	134	142	164	153
2	4	86	37	38	72	95	95	124	131	141	161	157
3	8	86	47	20	63	92	92	121	128	132	158	156
4	12	91	59	18	52	86	88	115	123	127	153	150
5	16	97	70	39	36	76	80	-1000	117	126	147	147
6	20	101	74	52	13	63	78	109	113	121	143	148
7	24	102	83	61	11	48	75	100	111	118	139	143
8	28	107	90	72	31	29	70	99	106	113	136	140
9	32	108	96	81	52	17	63	92	101	112	130	134
10	36	113	99	85	65	15	52	79	101	109	128	129
11	40	114	101	87	70	34	37	74	98	103	122	122
12	44	117	100	88	74	57	11	62	91	94	116	118
13	48	117	103	89	77	62	11	48	85	91	112	122
14	52	121	116	98	85	75	37	35	76	88	109	120
15	56	124	122	109	95	91	54	16	62	84	107	120
16	60	128	124	111	99	98	59	15	48	81	101	116
17	64	131	127	115	101	99	61	30	37	70	90	110
18	68	132	131	118	107	102	76	43	18	61	84	103
19	72	134	135	122	110	110	86	57	18	52	76	99
20	76	134	135	128	114	113	90	65	33	38	70	95
21	80	138	138	128	118	117	95	74	44	18	61	93
22	84	138	138	131	120	123	102	82	-1000	19	55	84
23	88	141	140	137	124	127	106	91	64	39	38	85
24	92	142	141	140	129	126	114	99	73	53	11	78

Tab. X-4:Stesa sismica 46_SR ONDE SH – Sezione sismostratigrafica - Rifrattori spessori e velocità

		QUOTA PROFILO	VELOCITA'	QUOTA	VELOCITA'	QUOTA	VELOCITA'
GEOFONI	DISTANZA	TOPOGRAFICO	STRATO 1	STRATO 1	STRATO 2	STRATO 2	STRATO 3
STAZIONE	[m]	[m]	[m/s]	[m]	[m/s]	[m]	[m/s]
1	0	164.00	226	159.75	537	149.59	1433
1.5	2	164.00	226	159.75	537	149.60	1431
2	4	164.00	227	159.75	537	149.60	1429
2.5	6	164.00	228	159.75	537	149.61	1425
3	8	164.00	230	159.75	537	149.61	1421
3.5	10	164.00	230	159.75	537	149.62	1418
4	12	164.00	231	159.75	537	149.63	1414
4.5	14	164.00	229	159.75	537	149.62	1410
5	16	164.00	228	159.75	537	149.61	1405
5.5	18	164.00	227	159.75	537	149.60	1401
6	20	164.00	226	159.75	537	149.58	1396
6.5	22	164.00	224	159.75	537	149.55	1394
7	24	164.00	223	159.75	537	149.51	1390
7.5	26	164.00	220	159.75	537	149.46	1386
8	28	164.00	217	159.75	537	149.40	1381
8.5	30	164.00	216	159.75	537	149.35	1377
9	32	164.00	215	159.75	537	149.30	1373
9.5	34	164.00	214	159.75	537	149.24	1370
10	36	164.00	213	159.75	537	149.17	1367
10.5	38	164.00	211	159.75	537	149.10	1363
11	40	164.00	209	159.75	537	149.01	1358
11.5	42	164.00	212	159.75	537	148.93	1352
12	44	164.00	215	159.75	537	148.86	1348
12.5	46	164.00	217	159.75	537	148.78	1347
13	48	164.00	219	159.75	537	148.70	1348
13.5	50	164.00	217	159.75	537	148.62	1350
14	52	164.00	215	159.75	537	148.54	1349
14.5	54	164.00	218	159.75	537	148.46	1350
15	56	164.00	220	159.75	537	148.38	1351
15.5	58	164.00	223	159.75	537	148.31	1352
16	60	164.00	226	159.75	537	148.24	1350
16.5	62	164.00	226	159.75	537	148.19	1347
17	64	164.00	226	159.75	537	148.15	1342
17.5	66	164.00	228	159.75	537	148.14	1342
18	68	164.00	229	159.75	537	148.15	1345
18.5	70	164.00	229	159.76	538	148.16	1352
19	72	164.00	228	159.77	538	148.19	1363
19.5	74	164.00	228	159.78	539	148.22	1373
20	76	164.00	228	159.79	540	148.26	1382
20.5	78	164.00	225	159.80	541	148.31	1389
21	80	164.00	223	159.81	543	148.37	1395
21.5	82	164.00	221	159.82	544	148.43	1401
22	84	164.00	219	159.83	545	148.49	1404
22.5	86	164.00	216	159.84	546	148.55	1405
23	88	164.00	212	159.86	547	148.61	1405
23.5	90	164.00	211	159.87	548	148.67	1404
24	92	164.00	210	159.87	549	148.73	1403

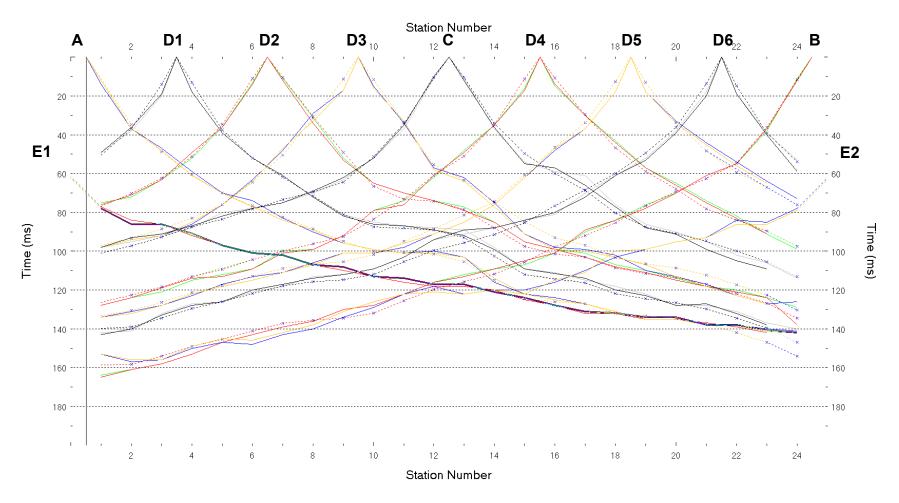


Fig. X-2:Stesa sismica 46_SR ONDE SH - Dromocrone - Scala 1:500

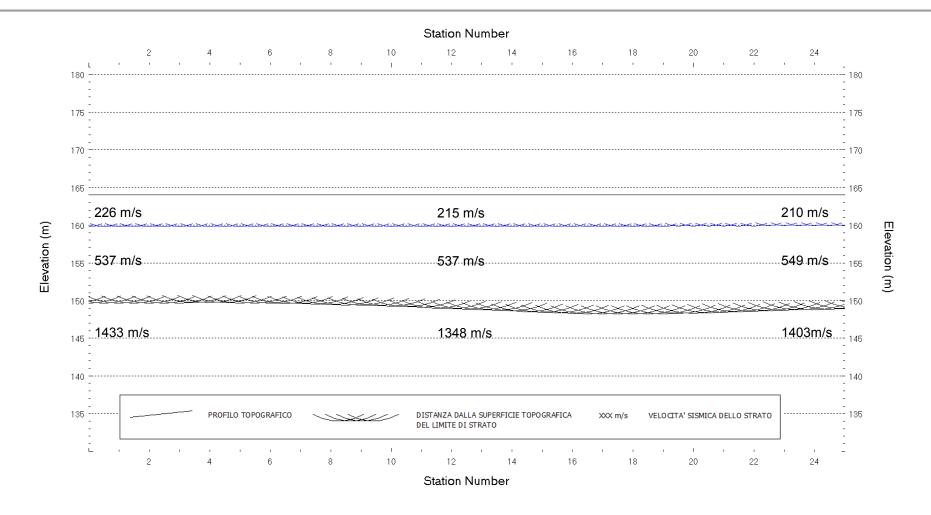


Fig. X-3: Stesa sismica 46_SR ONDE SH – Sezione Sismostratigrafica – Scala 1:500

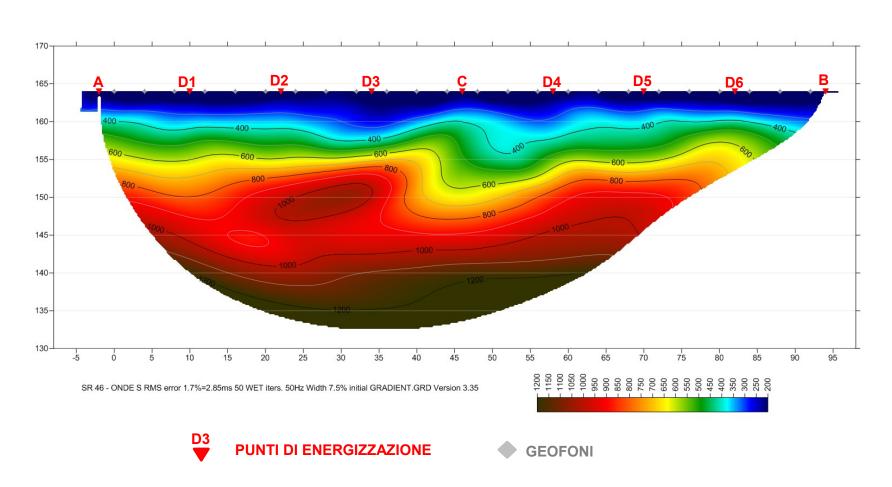


Fig. X-4: Stesa sismica 46_SR ONDE SH – Tomografia sismica - Scala 1:500

XI. ALLEGATO GRAFICO: 11_MASW ANALISI MASW ZVF+THF CONGIUNTE -SISMOGRAMMA - SPETTRO E CURVA DISPERSIONE - RISULTATI MODELLO - STRATIGRAFIA - PROFILO Vs

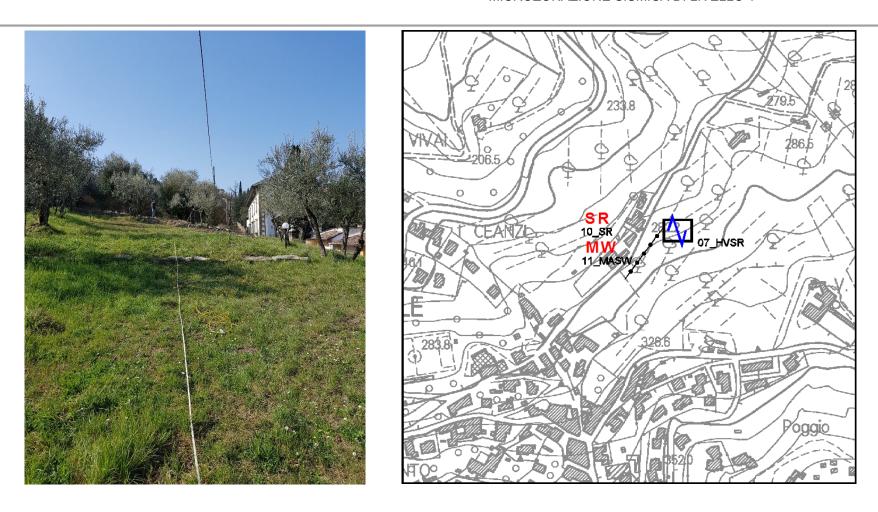


Fig. XI-1: Ripresa fotografica ed inquadramento scala 1:5000

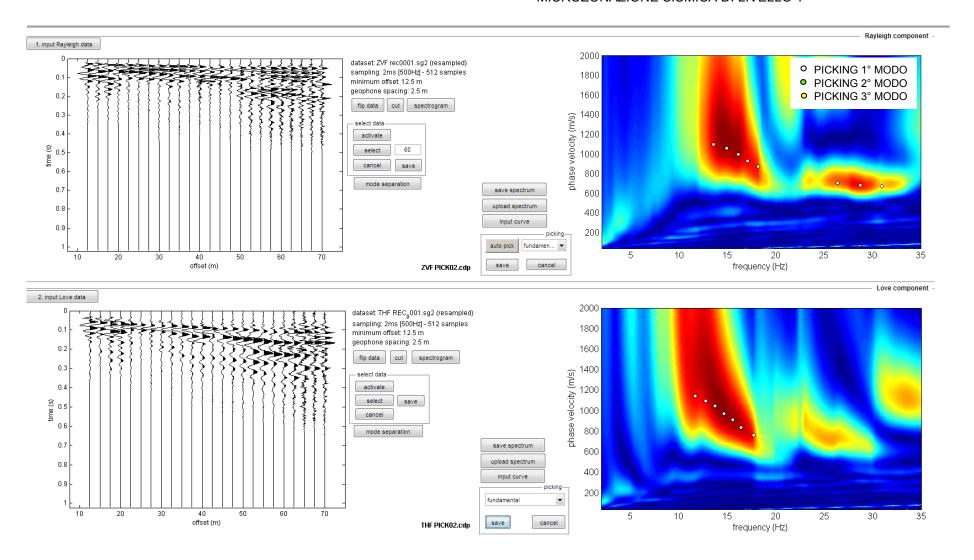


Fig. XI-2: 11_MASW - Analisi MASW ZVF+THF - Sismogrammi (sinistra) - Spettri di velocità con picking

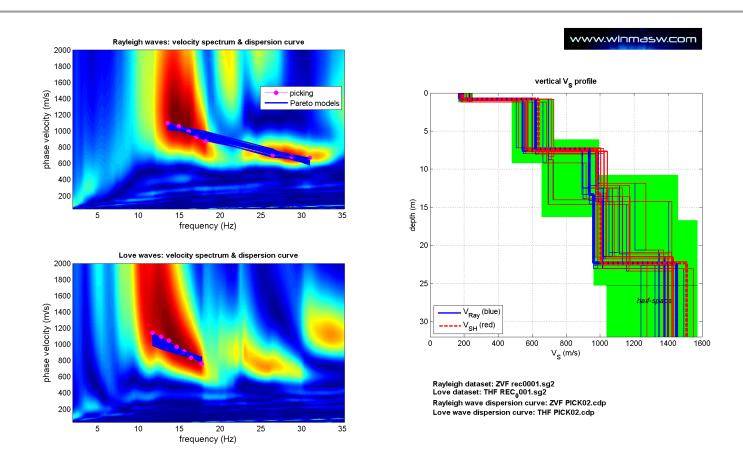


Fig. XI-3: 11_MASW - Analisi MASW ZVF+THF - Risultati del Best Model

PROF. (m)	SPESSORE (m)	Vsv (m/s)	Vsh (m/s)	Vp (m/s)	ρ (kg/mc)	ν
1.06	1.06	203	207	502	1890	0.40
7.81	6.75	591	608	1210	2100	0.34
13.41	5.6	917	954	1922	2210	0.35
22	8.59	1064	1098	2018	2220	0.31
-	-	1376	1425	2480	2270	0.28

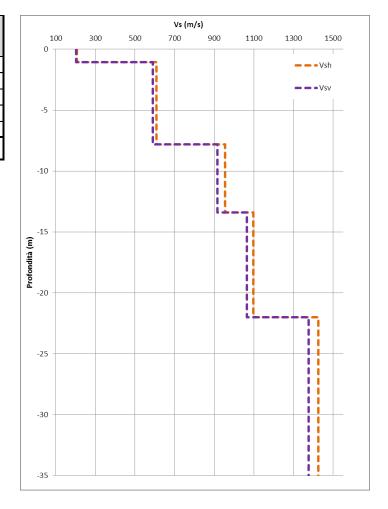


Fig. XI-4: 11_MASW Analisi - MASW ZVF+THF - Profili di velocità (Mean Model)

XII. ALLEGATO GRAFICO: 23_MASW ANALISI MASW ZVF+THF CONGIUNTE - SISMOGRAMMA - SPETTRO E CURVA DISPERSIONE - RISULTATI MODELLO - STRATIGRAFIA - PROFILO Vs

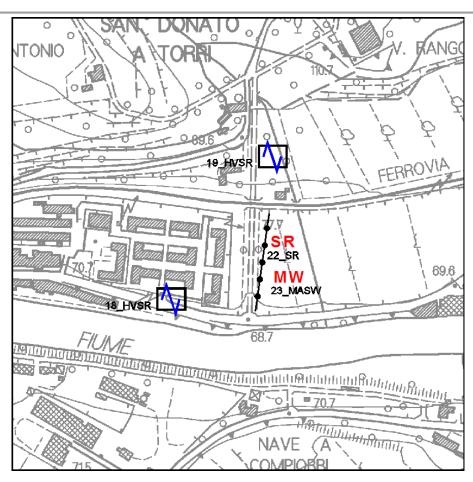


Fig. XII-1: Ripresa fotografica ed inquadramento scala 1:5000

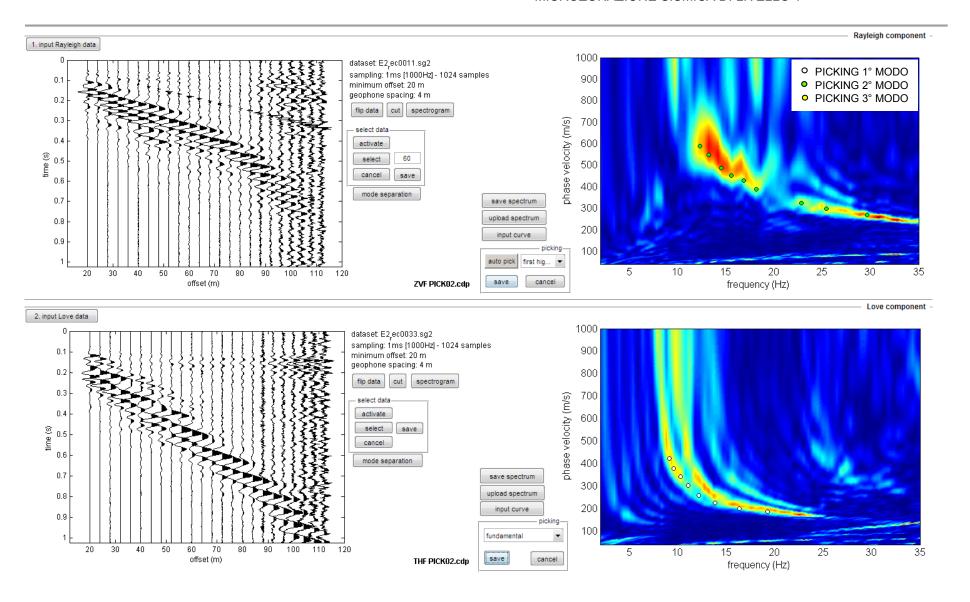


Fig. XII-2: 23_MASW - Analisi MASW ZVF+THF - Sismogrammi (sinistra) - Spettri di velocità con picking

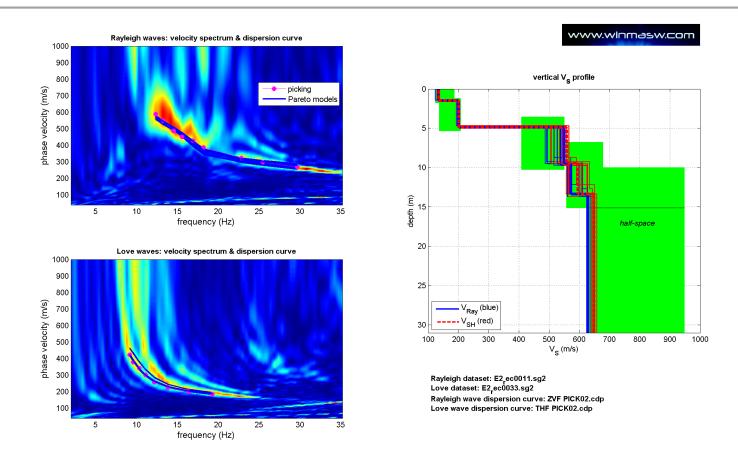


Fig. XII-3: 23_MASW - Analisi MASW ZVF+THF - Risultati del Best Model

PROF. (m)	SPESSORE (m)	Vsv (m/s)	Vsh (m/s)	Vp (m/s)	ρ (kg/mc)	ν
1.48	1.48	134	136	325	1780	0.40
4.81	3.33	200	202	458	1860	0.38
9.47	4.66	519	537	1188	2100	0.38
13.35	3.88	591	601	1182	2090	0.33
-	-	630	643	1285	2110	0.34

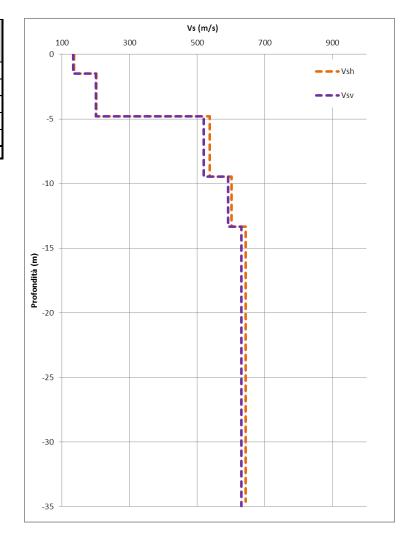


Fig. XII-4: 23_MASW - Analisi MASW ZVF+THF - Profili di velocità (Mean Model)

XIII. ALLEGATO GRAFICO: 35_MASW ANALISI MASW ZVF+THF CONGIUNTE - SISMOGRAMMA - SPETTRO E CURVA DISPERSIONE - RISULTATI MODELLO - STRATIGRAFIA - PROFILO Vs

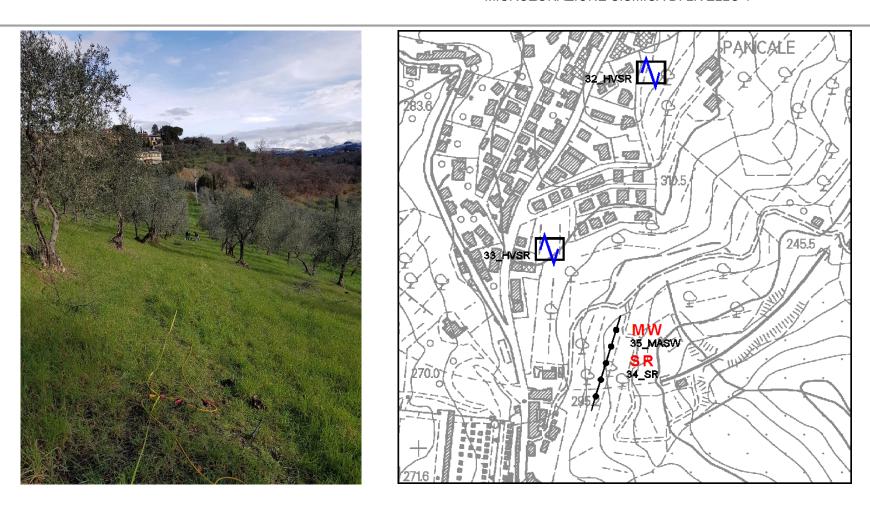


Fig. XIII-1: Ripresa fotografica ed inquadramento scala 1:5000

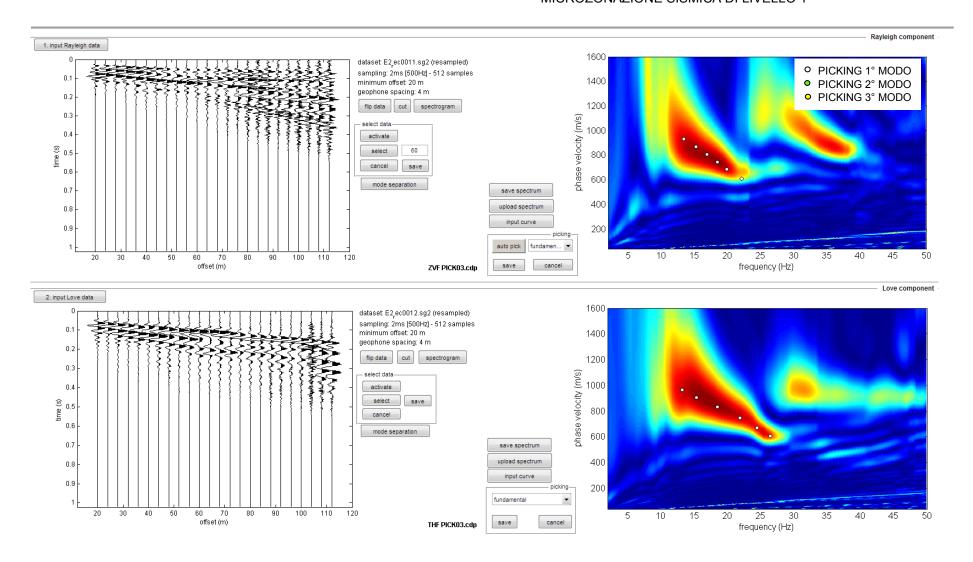


Fig. XIII-2: 35_MASW - Analisi MASW ZVF+THF - Sismogrammi (sinistra) - Spettri di velocità con picking

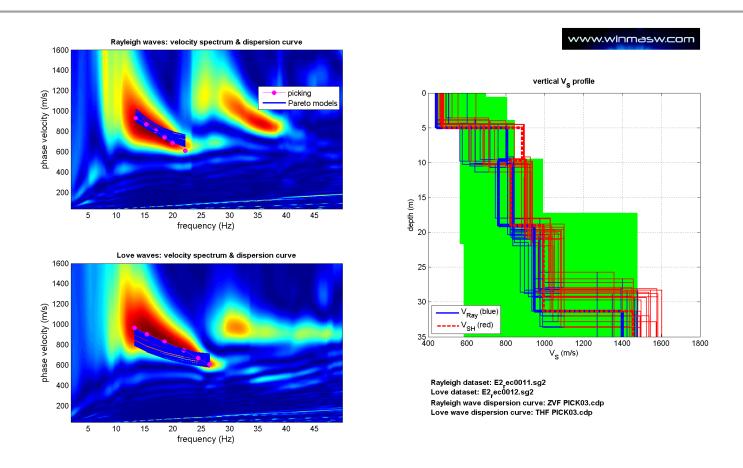


Fig. XIII-3: 35_MASW - Analisi MASW ZVF+THF - Risultati del Best Model

PROF. (m)	SPESSORE (m)	Vsv (m/s)	Vsh (m/s)	Vp (m/s)	ρ (kg/mc)	ν
4.45	4.45	456	484	1264	2110	0.43
9.99	5.54	715	792	1610	2170	0.38
20.08	10.09	824	904	1878	2210	0.38
29.69	9.61	958	1040	1919	2210	0.33
-	-	1427	1499	2991	2320	0.35

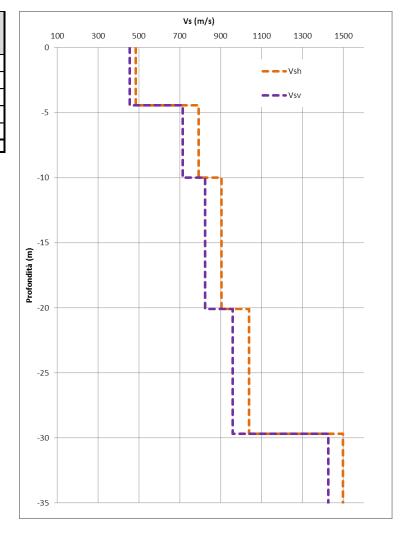


Fig. XIII-4: 35_MASW - Analisi MASW ZVF+THF - Profili di velocità (Mean Model)

XIV. ALLEGATO GRAFICO: 40_MASW ANALISI MASW ZVF+THF CONGIUNTE - SISMOGRAMMA - SPETTRO E CURVA DISPERSIONE - RISULTATI MODELLO - STRATIGRAFIA - PROFILO Vs

Fig. XIV-1: Ripresa fotografica ed inquadramento scala 1:5000

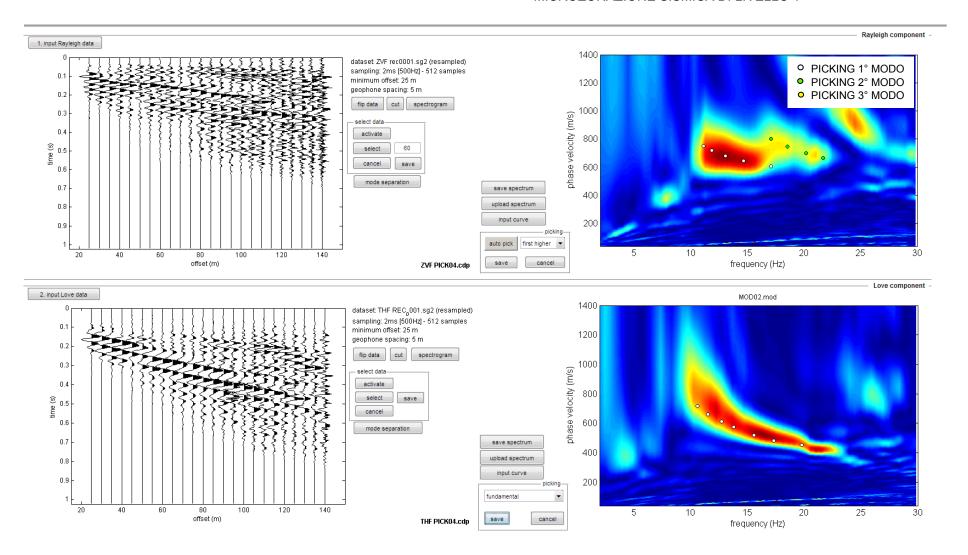


Fig. XIV-2: 40_MASW - Analisi MASW ZVF+THF - Sismogrammi (sinistra) - Spettri di velocità con picking

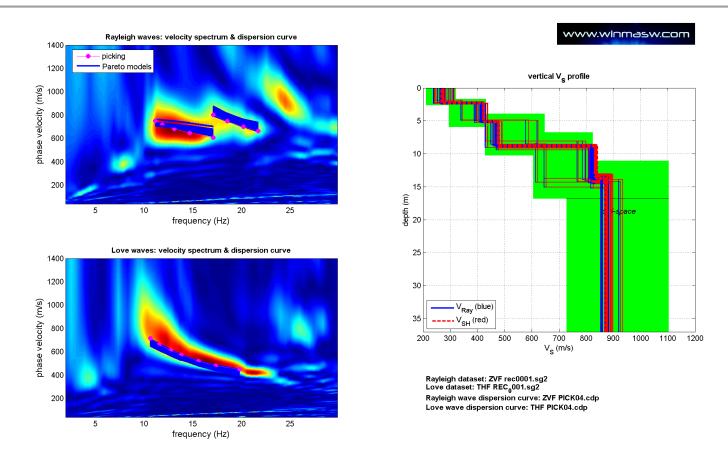


Fig. XIV-3: 40_MASW - Analisi MASW ZVF+THF - Risultati del Best Model

PROF. (m)	SPESSORE (m)	Vsv (m/s)	Vsh (m/s)	Vp (m/s)	ρ (kg/mc)	ν
2.3	2.3	266	269	698	1970	0.42
5.13	2.83	413	421	952	2040	0.38
8.77	3.64	471	480	1011	2060	0.36
13.65	4.88	810	824	1833	2200	0.38
-	-	869	885	1730	2190	0.33

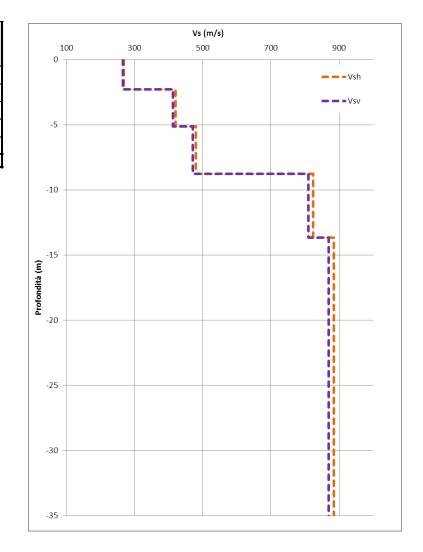


Fig. XIV-4: 40_MASW - Analisi MASW ZVF+THF - Profili di velocità (Mean Model)

RELAZIO	ONE	TECN	IICA	INTER	RPR	RETAT	IVA
SULLE	INDA	GINI	GEO	FISICH	łΕ	PER	LA
MICROZ	ZONA:	ZIONE	SISM	IICA D	111	/FLLO	1

XV. ALLEGATO GRAFICO: 47_MASW ANALISI MASW ZVF+THF CONGIUNTE - SISMOGRAMMA - SPETTRO E CURVA DISPERSIONE - RISULTATI MODELLO - STRATIGRAFIA - PROFILO Vs

Fig. XV-1: Ripresa fotografica ed inquadramento scala 1:5000

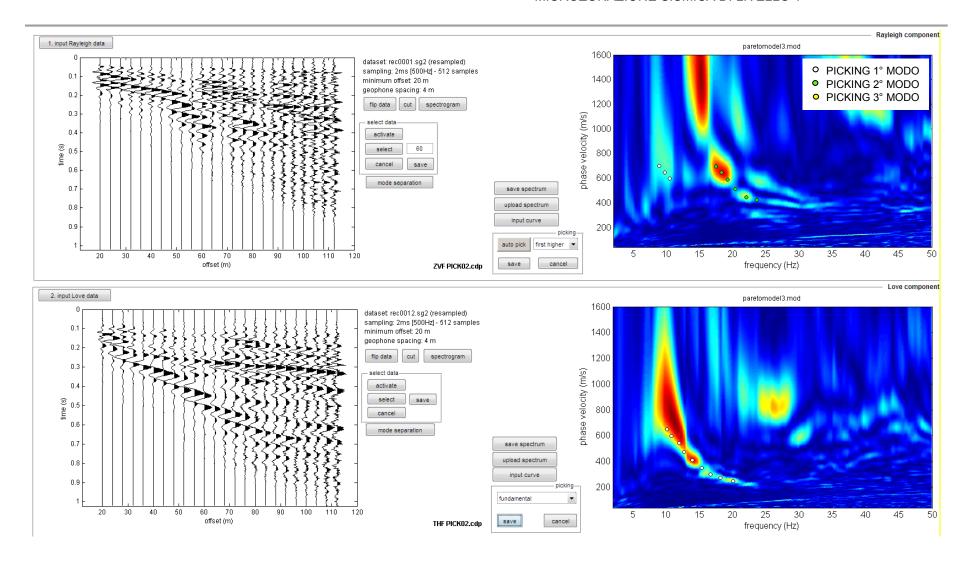


Fig. XV-2: 47_MASW - Analisi MASW ZVF+THF - Sismogrammi (sinistra) - Spettri di velocità con picking

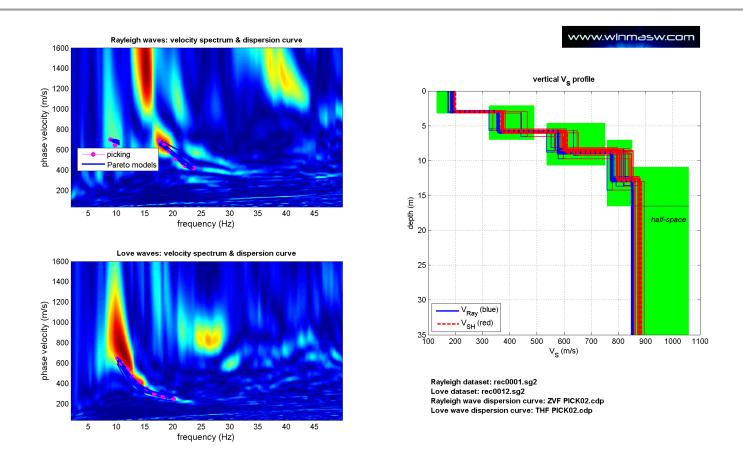


Fig. XV-3: 47_MASW - Analisi MASW ZVF+THF - Risultati del Best Model

PROF. (m)	SPESSORE (m)	Vsv (m/s)	Vsh (m/s)	Vp (m/s)	ρ (kg/mc)	ν
3.04	3.04	185	195	453	1860	0.40
5.89	2.85	363	378	751	1980	0.35
8.75	2.86	577	601	1184	2090	0.34
12.89	4.14	795	819	1526	2160	0.31
-	-	850	870	1673	2180	0.33

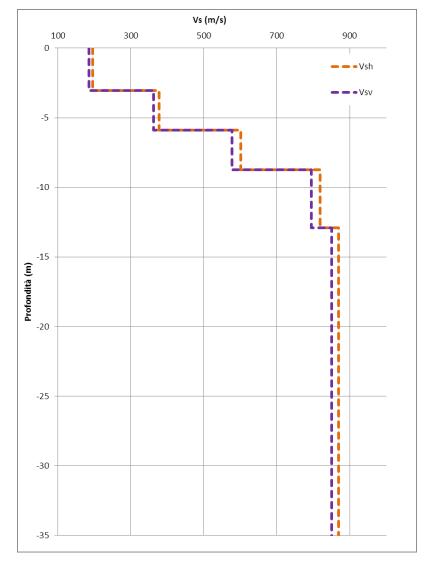


Fig. XV-4: 47_MASW - Analisi MASW ZVF+THF - Profili di velocità (Mean Model)